Диагонали ромба делят ромб на четыре равных прямоугольных треугольника. Точка пересечения диагоналей делит диагонали пополам. Следовательно, 14 : 2 = 7 см - это половина второй диагонали. Найдем половину первой диагонали с теоремы Пифагора: с² = а² + b², где с - гипотенуза = сторона ромба = 25 см, а и b - катеты = половины диагоналей ромба. Пусть а = 7 см, найдем b.
Рассмотрим треугольники АВС и АВЕ. У них угол В- общий, угол ВАЕ=углу ВСА. Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны. Тогда АВ:АЕ=ВС:АВ АВ²=АЕ*ВС АВ³=4*(4+12)=64 АВ=√64=8 см Площадь треугольника равна половине произведения его высоты на сторону, к которой эта высота проведена. Опустим высоту СН на прямую ВА, содержащую сторону АВ треугольника. . Треугольник СВН - прямоугольный, где СН - катет, противолежащий углу 30°. СН=ВС:2=8 см S (АВС)=СН*АВ:2=8*8:2=32 см²
1) Sкв.=a•a
2) 1,9•1,9=3,61 (см) - Sкв.
ответ: 3,61 см.