Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Sосн=6
Объяснение:
Дано:
АВСА1В1С1-правильная призма.
∆АВС- равносторонний треугольник
Sпол=12+24√3
Sосн=?
Решение.
Все ребра одинаковые
АВ=ВС=АС=АА1=ВВ1=СС1=А1В1=В1С1=А1С1;
Пусть каждое ребро будет иметь значение х.
Формула нахождения площади боковой поверхности.
Sбок=Росн*h.
Росн=3*АВ=3х
h=x
Sбок=3х*х=3х²
Формула нахождения равностороннего треугольника ∆АВС.
Sосн=АВ²√3/4; АВ=х
Sосн=х²√3/4.
Формула нахождения площади полной поверхности призмы.
Sпол=Sбок+2*Sосн.
Sпол=3х²+2*х²√3/4=3х²+х²√3/2.
Составляем уравнение
3х²+х²√3/2=12+24√3 умножаем правую и левую часть на 2.
6х²+х²√3=24+48√3
х²(6+√3)=24+48√3
х²=(24+48√3)/(6+√3)
х²=(24(1+2√3)/(√3(2√3+1) сокращаем на (1+2√3)
х²=24/√3
х²=8*√3*√3/√3
х²=8√3.
Подставим значение х² в формулу площадь основания.
Sосн=x²√3/4=8√3√3/4=2*3=6
= (13+4x^4)· (13+4x^4)= 169 + 13·4x^4 + 13·4x^4 + 16x^8 = 169 + 104x^4 + 16x^8