Обозначим вершины параллелепипеда АВСDD1FА1В1С1. Формула объема параллелепипеда V=S•H, где Ѕ - площадь грани, лежащей в основании, Н - высота, т.е. расстояние между параллельными (горизонтальными) гранями.
Ѕ(ромба)=d•d1/2=BD•AC/2=6•8/2=24 см² Диагонали ромба взаимно перпендикулярны и делят его на 4 равных прямоугольных треугольника, катеты которых равны половинам диагоналей. Из соотношения катетов 3:4, эти треугольники – так называемые египетские, ⇒ гипотенузы этих треугольников -стороны ромба– равны 5 см.
По условию все грани параллелепипеда - равные ромбы, ⇒ боковое ребро составляет с соседними сторонами основания равные углы. ∠А1АК=∠А1АМ. Площади равных граней равны, а их высоты – равные перпендикуляры.⇒ А1К=А1М. Из формулы площади параллелограмма h=S:a=24/5 см. По т.Пифагора АК=√(AA1²-A1К²)=√(5²-(24/5)²)=7/5 см.
Треугольники АКА1 и АМА1 равны по катетам и общей гипотенузе АА1 Проекции равных наклонных А1К и А1М равны. ⇒ НК=НМ. Отсюда прямоугольные ∆ АКН=∆ АМН, их острые углы равны. Поэтому основание высоты А1Н параллелепипеда лежит на биссектрисе угла ВАD, т.е. на диагонали ромба. Прямоугольные ∆ АКН ~∆ АВО по общему острому углу при А. Из подобия следует отношение АН:АВ=АК:АО ⇒АН:5=(7/5):4 ⇒ АН=7/4. т.Пифагора А1Н=(√(AA1²-АН*)=√((400-49):4))=√(9•39/16). АН=0,75√39. V(параллелеп)=24• 0,75√39=18√39 или ≈ 112,41 см³
Объяснение:
Рисунок к задаче в приложении.
Построить три заданных точки не очень трудно.
А вот четвёртую точку - С - построим силой Разума.
мысль 1 - стороны параллелограмма параллельны
мысль 2 - противоположные стороны равны - AD = BC.
мысль 3 - как точка D сдвинута от точки А, так и точка С сдвинута от точки В.
РЕШЕНИЕ
Вычисляем разность координат точек А и D.
dX = Dx - Ax = -2 - (-3) = +1 - сдвинута на 1 вправо.
dY = Dy - Ay = -5 - (-2) = - 3 - сдвинута на 3 вниз.
Такие же сдвигу применим к точке В и получим координату точки С.
Cx= Bx + 1 = 4 + 1 = 5
Cy = By - 3 = 7 - 3 = 4
ОТВЕТ: С(5;4) - координата точки С.
найдем катет АС по теореме Пифагора
АС=
находим высоту СН