М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
eleniuuum
eleniuuum
10.03.2020 06:42 •  Геометрия

Боковая ребро правилной четырехуголной пирамида равно 2см и наклонено к плоскости оснавания под углом 30градусов найдите висоту пирамиды

👇
Ответ:
fgioryughorhghu
fgioryughorhghu
10.03.2020

Высота равна половине бокового ребра, так как является катетом, лежащим против угла в 30 градусов в прямоугольним треугольнике, образованном боковым ребром, высотой и половинкой диагонали основания.

ответ: 1см ·

4,5(3 оценок)
Открыть все ответы
Ответ:
209439an
209439an
10.03.2020

Boт когда в голову приходят такие решения, я все-таки понимаю, зачем сижу на этом сайте :)

1. Треугольник "достраивается" до параллелограмма. Для этого медиана АК (К - середина ВС) продолжается на свою длину за точку К и полученная точка А1 соединяется с В и С. 

2. на АА1 отмечается точка М1 так, что М1К = МК. Ясно, что М1ВМС - тоже параллелограмм (я даже не стану уточнять, что М1 - точка пересечения медиан треугольника А1ВС, симметричного треугольнику АВС относительно точки К).

Поэтому угол ВМ1С = угол ВМС.

В четырехугольнике М1ВАС сумма противоположных углов ВМ1С и ВАС равна 180 градусов, поэтому вокруг него можно описать окружность.

М1А и ВС - две хорды этой окружности, пересекающиеся в точке К. Поэтому

АК*М1К = ВК*КС; 

Если обозначить длину медианы АК как m, то М1К = m/3, и

m^2/3 = (8/2)^2; m^2 = 48; m = 4*√3

 

Задача, конечно, очень простая, и "задним числом" понятно, что на это решение и рссчитывали (может быть, там можно как то доказать подобие треугольников АВК и СМК, но мне уже не охота этим заниматься, тем более, что это совершенно эквивалентный метод), но сам оказался симпатичным.

4,6(84 оценок)
Ответ:
Asker1231
Asker1231
10.03.2020

Это скорее алгебраическая задача.

Пусть АВ = с; BC = a; AC = b; 

p = (a + b + c)/2;

p - c = z = 7√3; или b + a - c = 2*z;

Радиус r вневписанной окружности, касающийся внешним образом стороны a, равен

r = S/(p - a); или r = 2*S/(b + c - a); 

Теперь числитель и знаменятель этой дроби умножаются на 2*z = b + a - c;

r = 2*S*2*z/((b + c - a)*(b - c  +a)) = 4*S*z/(b^2 - (c - a)^2) = 4*S*z/(b^2 - a^2 - c^2 + 2*a*c);

Теперь надо подставить S = a*c*sin(B)/2 и b^2 = a^2 + c^2 - 2*a*c*cos(B); получается

r = 2*z*a*c*sin(B)/(2*a*c - 2*a*c*cos(B)) = z*sin(B)/(1 - cos(B)); это ответ в общем случае.

Если подставить числа z = 7√3; sin(B) = √3/2; cos(B) = -1/2, то r = 7;

 

Я решил добавить кое-что - мало ли, кому пригодится.

Соотношение r = S/(p - a); где r - радиус вневписанной окружности, касающийся внешним образом стороны a, доказать очень просто. Если соединить центр О этой окружности с вершинами треугольника АВС, то 

S = Sabo + Saco - Sbco (Sabo - это площадь треугольника АВО, и так далее)

В каждом из этих треугольников радиус вневписанной окружности является высотой к стороне, которая - к тому же - сторона треугольника АВС.

S = AB*r/2 + AC*r/2 - BC*r/2 = (c + b - a)*r/2 = (p - a)*r; где p = (a + b + c)/2;

ЧТД.

Отсюда, кстати, сразу можно получить очень веселые и красивые следствия, например, такое (с учетом формулы Герона для площади)

S^2 = r*ra*rb*rc;

где r - радиус вписанной окружности, ra, rb, rc - радиусы трех вневписанных окружностей треугольника АВС. 

4,7(42 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ