ответ: гипотенуза =20см
Объяснение: по свойствам угла 30°, катет лежащий напротив него равен половине гипотенузы. Меньший катет будет как раз он, потому что второй острый угол будет 60°, а наибольшая сторона лежит напротив большего угла и наоборот, поэтому катет, который лежит против угла 30° и будет наименьшим. Пусть тогда он будет "х", тогда гипотенуза будет 2х. Так как в сумме они составляют 30см, составляем уравнение:
х+2х=30
3х=30
х=30÷3
х=10; меньший катет=10. Теперь найдём гипотенузу: 2×10=20см.
окей я добавил фото с рисунками
часть 1
1. 3)
2.
дано:
δавс
∠а-112°
найти:
∠в
находим угол при основании
1)180-112=68°
углы при основании равны, зная это находим третий угол
2)∠=180-68*2=44°
ответ: 44°
3.
дано:
δавс
∠в=30°
ас=3 см
найти:
вс
сторона, лежащая напротив угла в 30 в 2 раза меньше гипотенузы, зная это
вс=3*2=6 см
ответ: 6 см
4.
дано:
окружность с центром о
ав-хорда
∠оав=48°
найти:
∠аов
если соединить точки хорды с центром получим равнобедренный треугольник, зная, что углы у него при основании равны, считаем угол аов
∠аов=180-48*2=84°
ответ: 84°
часть 2
5.
дано:
δавс
найти:
∠при основании
углы при основании равны
пусть угол при основании будет х°, значит противолежащий основанию 7х°, исходя из этого составим уравнение
7х+х+х=180
решаем как линейное уравнение
9х=180
х=180: 9
х=20
ответ: 20°
ответ: 3√5/5 см²
Объяснение:
ABCD - ромб, АН = h = 4√3/6 = 2√3/3 см - высота ромба.
АС = d₁ - большая диагональ.
h = 2/3 d₁, ⇒
d₁, = 3/2 h = 3/2 · 2√3/3 = √3 см
ΔАСН: ∠АНС = 90°,
sin α = h / d₁ = 2√3/3 / √3 = 2/3
cosα = √(1 - sin²α) = √(1 - 4/9) = √(5/9) = √5/3
tg α = sinα / cosα = (2/3) : (√5/3) = 2/3 · 3/√5 = 2/√5
Диагонали ромба перпендикулярны и точкой пересечения делятся пополам.
ΔОСВ: ∠СОВ = 90°, ОС = d₁/2, ОВ = d₂/2,
tg α = OB / OC
OB = OC · tgα
d₂/2 = d₁/2 · tgα = √3/2 · 2/√5 = √3/√5
d₂ = 2√3/√5
Площадь ромба:
S = 1/2 d₁ · d₂ = 1/2 · √3 · 2√3/√5 = 3/√5 = 3√5/5 см²