рассмотрим треугольники abc и a1b1c1, у которых ав = a1b1, ас = a1c1 ∠ а = ∠ а1 (см. рис.2). докажем, что δ abc = δ a1b1c1.
так как ∠ а = ∠ а1, то треугольник abc можно наложить на треугольник а1в1с1 так, что вершина а совместится с вершиной а1, а стороны ав и ас наложатся соответственно на лучи а1в1 и a1c1. поскольку ав = a1b1, ас = а1с1, то сторона ав совместится со стороной а1в1 а сторона ас — со стороной а1c1; в частности, совместятся точки в и в1, с и c1. следовательно, совместятся стороны вс и в1с1. итак, треугольники abc и а1в1с1 полностью совместятся, значит, они равны.
Диагонали ромба являются биссектрисами его внутренних углов, поэтому большая диагональ ромба разделит ромб на два равносторонних треугольника, т.к. все углы в нем окажутся 60°, отсюда сторона ромба тоже 42√3, а периметр,стало быть, 4*42√3=168√3
Диагонали делятся в точке пересечения пополам и пересекаются под прямым углом. значит, при пересечении диагоналей образуется 4 прямоугольных треугольника. со сторонами - две половины диагоналей и сторона ромба. У каждого из этих треугольников два острых угла 60° и 30°, т.к. сумма острых равна 90° и диагональ является биссектрисой внутренних углов ромбаа. половина большей диагонали 42√3/2=21√3, а половина меньшей лежит против угла в 30° и равна половине гипотенузы - стороны ромба. Если сторона ромба 2х, то половина меньшей диагонали х.
По теореме ПИфагора √((2х)²-х²)=21√3, отсюда х=21√3, значит сторона ромба равна 42√3, периметр равен 4*42√3=168√3