Расстояние от точки Д до стороны ВС - перпендикуляр ДЕ. Так как АД перпендикуляр к плоскости треугольника АВС и ДЕ перпендикуляр к ВС, то АЕ тоже перпендикуляр к ВС. Следовательно АЕ высота проведенная к ВС.
Площадь треугольника АВС вычисляется по формуле Герона.
Боковая грань перпендикулярная основанию - равнобедренный треугольник с высотой Н = 12 см - высота пирамиды и разбивает грань на два прямоугольных треугольника с катетом Н = 12 см и острым углом 60
В прямоугольном треугольнике с катетом 12 см и противолежащим углом tg 60 =
a =
a = = 4√3 - половина стороны основания равностороннего треугольника
Площадь правильного треугольника (основания) со стороной 2а = 2 * 4√3 = 8 * 4√3 и высотой h = = √144 = 12
S = * 8√3 * 12 = 48√3 см²
Объем пирамиды с высотой H = 12 см и площадью основания S = 48√3 см²
Найдём высоту в трапеции по т.Пифагора зная гипотенузу 13 и катет 5(чтобы найти катет,опустили два перпендикуляра с верхнего основания и получили прямоугольник,а у прямоугольника противолежащие стороны равны,значит из нижнего основания вычитаем 10 и получаем 10,а так как трапеция равнобедренная то получившееся значение 10 делим на два и получаем 5) высота равна 13² - 5² = h² h = 12а дальше просто подставляем значения в формулу площади трапеции S = ((10 + 20)/2)*12 S = 180см²если что задавай вопросы
Расстояние от точки Д до стороны ВС - перпендикуляр ДЕ. Так как АД перпендикуляр к плоскости треугольника АВС и ДЕ перпендикуляр к ВС, то АЕ тоже перпендикуляр к ВС. Следовательно АЕ высота проведенная к ВС.
Площадь треугольника АВС вычисляется по формуле Герона.
Р=13+14+15=42 см - периметр;
р=42/2=21 см - полупериметр;
S=√(p(p-a)(p-b)(p-c))=√(21(21-13)(21-14)(21-15))=√(21*8*7*6)=84 см²;
S=h*a/2 ⇒ AE=h=2S/a=2*84/14=12 см;
Треугольник АДЕ прямоугольный с катетами АЕ=12 см и АД=5 см. По т. Пифагора ДЕ=√(АЕ²+АД²)=√(12²+5²)=13 см.