Пусть этот прямоугольный треугольник будет АВС с прямым углом С, а высота к гипотенузе СН. Обозначим отрезок АН=х НВ=у Тогда S(AHC)=АН*СН:2=6, откуда СН=6*2:х Из треугольника СНВ СН=54*2:у Катет СН в обоих треугольниках один и тот же, следовательно 12:х=108:у 12у=108х у=9х Самое время вспомнить, что высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой; СН²=АН*ВН=х*9х=9х² СН=3х Из тр-ка АНС S=3x*x:2 12=3x² х²=4 х=2 АВ=АН+НВ=10х АВ=10*2=20 Проверка: Площадь АВС=6+54=60 СН=3х=6 S(ABC)=CH*AB:2=6*20:2=60
Треугольник АВС. В - вершина. АС - основание.Высота. Нужно из точки А провести дугу радиусом АВ, из точки С дугу радиусом ВС. Получится точка пересечения за пределами треугольника. Через эту точку из точки В чертим линию до основания.Биссектриса. Чертим дугу с центром В так, чтобы дуга пересекла стороны АВ и ВС, на сторонах получаем две промежуточные точки, из которых проводим две дуги с равным радиусом, который несколько больше половины основания, соединяем точку пересечения с В.Медиана. Из точек А и С проводим две дуги радиусом несколько больше половины основания, две полученные точки соединяем, линия пересекает основание в середине. Среднюю точку соединяем с точкой В.Такие действия можно провести с любым углом и стороной.
угол A+уголC=110,сумма углов треугольника равна 180,следовательно угол B=180-110=70.
угол B=углу A=70 ,угол A+угол C=110,следовательго угол C=110-70=40.
Внешний угол +C=180,следовательно внешний угол =180-40=140