Смотрите вложенный файл. Там чертеж. Допустим,около окружности описан квадрат(правильный четырехугольник),а в окружность вписан квадрат так,что вершины квадрата совпадают с точками касания окружности и описанного квадрата. (на чертеже все видно!) Сторона описанного квадрата равна 2а. В точке касания она делится пополам,и эти "половинки" равны а. Образуется прямоугольный треугольник. Из него получаем: а²+а²=2а² Тогда сторона вписанного квадрата равна а√2 Периметр вписанного квадрата равен p=4а√2 Периметр описанного квадрата равен P=8а p/P=(4а√2)/(8а)=√2/2(это отношение периметров) Площадь вписанного квадрата s=(a√2)²=2a² Площадь описанного квадрата S=S₂=(2a)²=4a² Отношение площадей: s/S=(2a²)/(4a²)=1/2
Да красивая задача. O-центр вписанной окружности (точка сечения биссектрис) Проведем отрезок ES-параллельный основанию CB и касающийся окружности. ECSB-трапеция ,в которую вписана окружность. Причем выходит, что раз центр окружности делит высоту трапеции пополам (на 2 равных радиуса) и KM||CB. То по теореме Фалеса: CK=KE=a , BM=MS=b (KA=1-a MA=2-b) Выходит что KM-средняя линия трапеции. Пусть ES=f ,BC=x. И тут начинается красивая арифметика: Из условия вписаной окружности в трапецию получим: f+x=2(a+b) тк KM=(f+x)/2 то KM=a+b Откуда: PAKM=(1-a+2-b+(a+b))=3 ответ: PAKM=3
ВС=СМ+ВМ=5+5=10(см)
ответ:ВС=10см