Кратчайшим расстоянием от точки до прямой является длина перпендикуляра, опущенного из этой точки на эту прямую.
Расстоянием от точки М до прямой BC является длина перпендикуляра CM = 6 cм.
Если прямая (AB), проведенная на плоскости через основание (B) наклонной (МВ), перпендикулярна её проекции (CB), то она перпендикулярна и самой наклонной (теорема о трех перпендикулярах) ⇒ Расстоянием от точки М до прямой AB отрезок MB
Образовалась трапеция DAEC. Проведём отрезок из точки А в точку F, которая является серединой стороны CD.Соединим точки Е и F. Мы видим, что образовалось 4 равных треугольника. Докажем: Рассмотрим треугольники EBC, CEF, FEA, FAD. В них: 1). BE = CF = EA = FD (так как точки E и F - середины равных сторон параллелограмма ABCD, в котором AB = CD); 2). Так как BC || EF || AD (EF является средней линией параллелограмма ABCD) => у нас есть уже 2 маленьких равных параллелограмма: BCFE и FEAD. => угол В = углу D (противолежащие углы параллелограмма ABCD равны), а те углы равны углам CFE и AEF (противолежащие углы параллелограмма BCFE и AEFD равны). 3). Так как BC || EF || AD => угол BCE = углу = CEF = углу EFA = углу FAD (накрест лежащие). Значит, треугольники равны по стороне и двум углам. Теперь мы видим, что это действительно 4 равных треугольника. Надо найти площадь трапеции, которая равна трём этим треугольничкам. Значит, надо площадь параллелограмма разделить на количество образовавшихся равных треугольников: 32 : 4 = 8 см^2, умножить на три равных треугольника: 8 * 3 = 24 см^2. ответ: 24 см^2.
уравнение окружности с центром в точке (a,b)
(x-a)²+(y-b)²=r² так как центр окружности на оси ОУ то a=0
x²+(y-b)²=r² (1) подставим в это уравнение координаты точек P и Е и получим систему уравнений
1+(6-b)²=r² (2)
9+(4-b)²=r²
вычтем из первого уравнения второе
(6-b)²-(4-b)²-8=0
36-12b+b²-16+8b-b²-8=0
12-4b=0 ; b=3 подставим значение b в уравнение (2)
1+3²=r²
r²=10
подставим значение b и r² в уравнение (1)
x²+(y-3)²=10