Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4
По Пифагору АВ=√(АС²+ВС²) = √(24²+18²) = √900 = 30 см.
В пирамиде боковые ребра равны, следовательно, равны и их проекции => вершина пирамиды S проецируется в середину гипотенузы АВ. АН=ВН=СН = 30:2 =15 см. Тогда в прямоугольном треугольнике ASH катет SH (высота пирамиды) по Пифагору равен
SH=√(АS²-AH²) = √(17²-15²) = 8 см.
Объем пирамиды равен V=(1/3)*So*H = (1/3)*(1/2)*АС*ВС*SH.
V = (1/6)*24*18*8 = 576 см³