Чертеж, я думаю, сумеешь сам нарисовать. Ромб с вершинами А, В, С, D Черти диагонали. Они пересекаются под прямым углом и в точке пересечения делятся пополам (как ромбу и полагается) . Диагонали АС и BD. Точка пересечения диагоналей О. Дано: АВ=50 см, т. к все стороны ромба равны, т. е. 200/4=50 Получились 4 прямоугольных треугольника, равных друг другу. S ромба = 4*S abo S abo=1/2AO*BO (площадь прямоугольного треугольника равна половине произведения катетов) Диагонами ромба относятся друг к другу как 3:4 Катеты треугольника АВО обозначаем как 3х и 4х (т. к. половины диагоналей тоже соотносятся друг с другом как 3:4) Т. О. получается прямоугольный треугольник с катетами 3х и 4х, и с гипотенузой 50 см. Согласно теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов. Гипотенуза = 50 см. Получаем: АВ=1/2АО*ВО 2500=(3х) 2+(4х) 2 2-это в квадрате 2500=9х2+16х2 2500=25х2 х2=100 х=10 S abo=1/2AO*BO AO=3x=30 см BO=4x=40 см S abo=1/2*30*40=600 S abcd=4*600=2400 ответ: площадь ромба = 2400 см2 Надеюсь, разберешься. Главное обозначь на чертеже вершины правильно. Кошмааар...
Два шара.
Радиусы шаров равны 8,8 см и 6,6 см.
Найти:Радиус шара, площадь поверхности которого равна сумме площадей их поверхностей - ?
Решение:Пусть R₁ - радиус одного шара (8,8 см), тогда R₂ - радиус другого шара (6,6 см).
Также R₃ - неизвестный радиус шара, площадь поверхности которого равна сумме площадей поверхностей изначально данных шаров.
S полн поверхности = 4πR²
S полн поверхности (R₁) = π(4 * 8,8²) = 309,76π см²
S полн поверхности (R₂) = π(4 * 6,6²) = 174,24π см².
Итак, по условию сказано, что есть какой-то шар, площадь поверхности которого равна сумме площадей поверхности изначально данных шаров.
⇒ S полн поверхности (R₃) = 309,76π + 174,24π = 484π см².
S полн поверхности (R₃) = 4πR² = 484π см² ⇒ R = √(484/4) = √121 = 11 см.
Итак, R₃ = 11 см.
ответ: 11 см.