Счертежом! стороны треугольника, периметр которого 60 см, пропорциональны числам 5: 4: 3. вычислите длины отрезков, на которые делит биссектриса меньшего угла противоположную сторону.
№1 КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам. №2 Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град. ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2 2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС
Можно так. 1) Середина диагонали АС прямоугольника является точкой пересечения диагоналей, а также центром симметриии прямоугольника. Значит точка О делит отрезок РК пополам, тогда в ΔСОР =ΔАОК по двум сторонам и углу между ними (ОР=ОК, АО=ОС и углы РОС и АОК равны как вертикальные). Отсюда РС=АК, а также РСIIАК, Значит АРСК параллелогамм. 2) S(АРСК)=РС*CD, CD=√(AC²-AD²)=√(169-144)=5, PC=AK=4, S(АРСК)=4*5=20. 3) Проведем РМ II CD, РМ=5, КМ=8-4=4, РК=√(РМ²+КМ²)=√(25+16)=√41, 4) По теореме косинусов АК²=АО²+ОК²-2АО*ОК*cos(AOK). АК=4, АО=6,5, ОК=√41/2.
КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам.
№2
Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН
КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град.
ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2
2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС