М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Serator2006
Serator2006
03.09.2021 19:08 •  Геометрия

Один из углов, образованных диагональю ромба и его стороной, равен 640.найдите меньший угол ромба. ответ дайте в градусах.

👇
Открыть все ответы
Ответ:
Mery0323
Mery0323
03.09.2021

Будем использовать следующие значения для сторон треугольника АВС: АВ=с, ВС=а, СА=b и его углов:

<А=а, <В=b, <C=y (a, b, y : Альфа, Бэта, Гама.)

Дано:

а=4, b=5, c=6.

Найти: a, b, y -?

Пусть b - наибольшая сторона, b<a+c.

По теореме косинусов находим наибольший угол b,

[Не обязательно писать, для ориентира: Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними.]

{b}^{2} = {a}^{2} + {c}^{2} - 2ac \times cos \beta

\cos\beta = \frac{a {}^{2} + c {}^{2} - b {}^{2} }{2ac} = \frac{16 + 36 - 25}{48} = 0,5625 = \\ = \frac{9}{16}

При основного тригонометрического тождества найдём Sin B

sin {}^{2} \beta + cos {}^{2} \beta = 1 \\ sin {}^{2} \beta = 1 - cos {}^{2} \beta \\ sin \beta = \sqrt{1 - \frac{81}{256} } = \\ = \sqrt{ \frac{175}{256} } = \frac{5 \sqrt{7} }{16}

С теоремы синусов найдём углы треугольника:

\frac{a}{ \sin( \alpha ) } = \frac{b}{ \sin( \beta ) } = \frac{c}{ \sin( \gamma ) }

Отсюда,

\sin( \alpha ) = \frac{a \sin( \beta ) }{b} = \frac{5 \sqrt{7} }{4} \times \frac{1}{5} = \frac{ \sqrt{7} }{4}

\sin( \gamma ) = \frac{c\sin( \beta ) }{b} = \frac{5 \sqrt{7} }{ 16} \times \frac{6}{5} = \frac{3 \sqrt{7} }{8}

С таблиц находим градусную меру углов:

а≈41°

b≈57°

Тогда,

у≈82°

ответ: 41° 57° 82°

4,8(76 оценок)
Ответ:
ksuhamalinovskaj
ksuhamalinovskaj
03.09.2021
Дано:

трапеция;

∠DAC = 63˚;

∠ACJ = 27˚;

D₂K = 10;

IJ = 12.

D₂К соединяет середины отрезков DE и AC.

IJ соединяет середины отрезков AD и EC.

Найти:

(AC * DE) * 1/2 = ?

Решение:

Пусть дана произвольная трапеция ADEC, где AC - большее основание (сумма углов при большем из оснований 63° + 27° = 90°), а DE - меньшее соответственно.

Продлим боковые стороны нашей произвольной трапеции до их пересечения. Обозначим пересечение точкой В.

Нетрудно заметить, что △ABC - прямоугольный (поскольку можно увидеть, что ∠DAC + ∠ACJ = 63˚ + 27° = 90° - сумма острых углов в прямоугольном треугольнике => ∠АВС прямой и равен 90°).

Обозначим середину большего из оснований произвольной трапеции, допустим, точкой К. Тогда из свойства, мы можем утверждать, что ВК - медиана прямоугольного △ABC.

Мы знаем, что медиана всегда делит отрезок, параллельный тому, к которому проведена медиана, на два равных, т.е. в данной ситуации она оба основания нашей трапеции делит пополам так, что AK = KC и DD₂ = D₂E.

Исходя из этих объяснений, запишем формулу для серединного отрезка к противоположным сторонам трапеции IJ.

IJ = 1/2 * (AC + DE).

D₂K = ВК - ВD₂. Известно, что ВК и ВD₂ медианы, проведённые из вершины прямого угла, которые по свойству медианы прямоугольного треугольника равны половине гипотенузы. То есть BK = AC * 1/2 (по свойству), соответственно BD₂ = DE * 1/2, откуда D₂K = 1/2 * (AC - DE).

Исходя из этого, мы можем сказать, что:

AC = D₂K + IJ = 10 + 12 = 22; DE = IJ - D₂K = 12 - 10 = 2.

Теперь остается найти полупроизведение этих оснований.

(AC * DE) * 1/2 = (22 * 2) * 1/2 = 44 * 1/2 = 44/2 = 22.

ответ: (AC * DE) * 1/2 = 22.
Углы при одном основании трапеции равны 63° и 27°. Отрезки, соединяющие середины противоположных сто
4,8(95 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ