Abcd — ромб. через вершину a проведено пряму am, перпендикулярну до сторін ab і ad ромба. o — точка перетину діагоналей ромба. доведіть, площини mbd і moa перпендикулярні.
Данное решение для первой четверти. Для остальных четвертей решение аналогичное
AB = 5√2; OA = OB - по условию ΔOAB - прямоугольный равнобедренный Теорема Пифагора OA² + OB² = AB² ⇒ 2OA² = AB² 2OA² = (5√2)² 2OA² = 50 ⇒ OA² = 25 ⇒ OA = OB = 5 Координаты точек А (0; 5), В (5; 0) Уравнение прямой y = kx+b Для точки А: 5 = k*0 + b; b = 5 Для точки В: 0 = k*5 + b; 5k = -b; k = -b/5; k = -5/5 = -1
Уравнение прямой для первой четверти y = -x + 5 Уравнение прямой для второй четверти y = x + 5 Уравнение прямой для третьей четверти y = -x - 5 Уравнение прямой для четвертой четверти y = x - 5
Площадь прямоугольного треугольника равна 84 дм², а радиус окружности, вписанной в этот треугольник, 3см. Найти катеты треугольника.
Пусть дан треугольник АВС, угол С=90º
Точки касания вписанной окружности на АС- точка К, на ВС - точка Н, на гипотенузе АВ- точка М.
Пусть АК=х, ВН=у.
Тогда по свойству отрезков касательных из одной точки АМ=х, ВМ=у
АВ=х+у
АС=х+3, ВС=у+3
Формула радиуса вписанной окружности
r=S:p, где r -радиус, S - площадь треугольника. р- его полупериметр
р=х+у+3
3=84:(х+у+3)
х+у+3=28⇒
х+у=25
у=25-х
АВ=х+у=25 дм
АС=х+3
ВС=25-х+3=28-х
По т.Пифагора
(х+3)²+(28-х)²=625
Произведя вычисления и приведя подобные члены, получим квадратное уравнение
х²-25х+84=0
D=25²-4·84=289
Решив уравнение, найдем два корня: 21 и 4
АС=21+3=24 дм
ВС=28-21=7 дм
Кстати, длины сторон этого треугольника из Пифагоровых троек, где стороны относятся как 7:24:25