1. Измерить провести окружность с центром в вершине неразвернутого угла и радиусом, равным длине отрезка. 2. Соединить точки пересечения окружности со сторонами угла. 3. Разделить пополам полученный отрезок для построения биссектрисы. Для этого провести две окружности с центрами в этих точках и радиусом, большим, чем длина соединяющего их отрезка. 2 точки пересечения этих окружностей между собой соединить и провести через них биссектрисы. 4. Точка пересечения получившейся биссектрисы и окружности из 1) пункта и есть наша искомая точка.
Сделаем рисунок трапеции ABCD (BC||AD), проведём в ней диагонали AC и BD. (Рисунок простой, каждый сможет сделать его) Через вершину С проведём параллельно диагонали ВD прямую до пересечения с продолжением АD в точке Е. Обратим внимание на то, что четырехугольник ВСЕD - параллелограмм. ( Если две стороны четырехугольника равны и параллельны - этот четырехугольник - параллелограмм). Следовательно, ВС=DЕ, и АЕ равно сумме оснований. Опустим высоту СН на АD/ Площадь треугольника АСЕ равна СН*(АD+DЕ):2 Но площадь трапеции также равна СН*(АD+DЕ):2 . Площадь трапеции равна произведению ее высоты на полусумму оснований. ) Высота СН для треугольника и трапеции - общая, а (АD+DЕ):2 - есть полусумма оснований=средняя линия трапеции.и АЕ равна сумме оснований, т.е средняя линия, умноженная на 2. Итак, зная диагонали трапеции и ее среднюю линию, можно найти ее площадь по формуле Герона. Это свойство трапеции желательно запомнить.
2. Соединить точки пересечения окружности со сторонами угла.
3. Разделить пополам полученный отрезок для построения биссектрисы. Для этого провести две окружности с центрами в этих точках и радиусом, большим, чем длина соединяющего их отрезка. 2 точки пересечения этих окружностей между собой соединить и провести через них биссектрисы.
4. Точка пересечения получившейся биссектрисы и окружности из 1) пункта и есть наша искомая точка.