Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Мне объясняли так, что вот допустим треугольник АВС. Точки, с которых окр касается сторон треугольника назовем, например, на стороне АВ точка К, на стороне ВС точка Р, на стороне АС точка Н. Ну и теперь чтобы продвинуться от точки К к точки Н, по друге КН пройдем быстрее, чем по сторонам КА и АН, то есть КА+АН больше дуги КН. ну и так с остальными. НС+СР больше дуги НР. и РВ+КВ больше дуги КВ. И когда сложим и части окр и все части треугольника, получим, то дуга окр меньше периметра треугольника
все расписал. там легко оказывается