М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
JuliusM
JuliusM
05.02.2023 06:22 •  Геометрия

Два равносторонниз треугольников abc и abc1 имеют общую сторону ab, длинна которой равна 10 см. плоскости этих треугольников перпендикулярны. найдите расстояние между вершинам c и c1

👇
Ответ:
vikkkki1
vikkkki1
05.02.2023
Для нахождения расстояния между вершинами c и c1 в треугольниках abc и abc1, мы можем воспользоваться теоремой Пифагора. Для этого нам понадобятся некоторые дополнительные факты о равносторонних треугольниках.

1. В равностороннем треугольнике все стороны равны.
2. Все углы равны 60 градусов.
3. Высота, опущенная из вершины треугольника на противоположную сторону, является биссектрисой, медианой и медиатрисой.

Итак, у нас есть два равносторонних треугольника abc и abc1. Мы знаем, что сторона ab в обоих треугольниках имеет длину 10 см. Также мы знаем, что плоскости этих треугольников перпендикулярны. Это означает, что высоты треугольников, опущенные из вершины c и c1 перпендикулярны к плоскости треугольников.

Пусть h и h1 - это высоты треугольников abc и abc1 соответственно, опущенные из вершин c и c1. Нам нужно найти расстояние между вершинами c и c1, то есть расстояние между основаниями этих двух высот.

По свойству равностороннего треугольника, высота h разделит сторону ab на две равные части, то есть каждая часть будет иметь длину 5 см. Аналогично, высота h1 разделит сторону ab на две равные части с длиной 5 см.

Теперь, чтобы найти расстояние между вершинами c и c1, мы можем воспользоваться теоремой Пифагора. Отметим это расстояние как d.

Используя теорему Пифагора для треугольника abc, мы можем записать:

d^2 = h^2 + (ab/2)^2

Подставив известные значения, получим:

d^2 = (10/2)^2 + 5^2
d^2 = 5^2 + 5^2
d^2 = 25 + 25
d^2 = 50

Теперь мы можем найти значение d:

d = sqrt(50)
d = 5sqrt(2)

Таким образом, расстояние между вершинам c и c1 равно 5sqrt(2) см.
4,8(38 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ