М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
PolinaFox6002
PolinaFox6002
02.08.2020 04:36 •  Геометрия

Отрезки ав и сd лежат на параллельных прямых,а отрезки вс и аd пересекаются в точке р.найдтите длину отрезка рd,если ad=60,ab=12,cd=18

👇
Открыть все ответы
Ответ:
НастяMAY
НастяMAY
02.08.2020

Данная пирамида не существует.

Объяснение:

Дано условие: Каждое боковое ребро пирамиды должно образовывать с плоскостью основания угол 60°. Такое условие возможно только при условии, что в основании лежит правильный многоугольник - многоугольник, у которого равны все стороны и все углы. Поскольку равнобокая трапеция не является правильным многоугольником, можно сказать, что данная пирамида невозможна. Однако, если представить, что лишь 2 боковых ребрa образуют с плоскостью основания угол 60°, то задача станет вполне решаемой.

Итак, представим пирамиду NABCD, где NO - h - , ∠NDC=∠NCD=60°, ∠ADB=90°, ∠BAD=90°. Из ΔАВD по частному случаю прямоугольных треугольников (30°, 60°, 90°):

AD=9, AB=18, BD=9√3; => DC = 18 - 4,5 - 4,5 = 9

Так как, по условию, ΔNDC - равносторонний, стороны ND= DC= NC= 9.

Исходя из теоремы о трёх перпендикулярах, получаем, что ∠ADC = ∠NCB = 90° (∠ADB= ∠ACB= 90°, ∠NOD= ∠NOC= 90°.

Из прямоугольных равнобедренных треугольников ΔNAD & ΔNBC, по частному случаю прямоугольных треугольников (45°, 45°, 90°):

NB = AN = 9√2

ответ: Боковые рёбра пирамиды, в основании которой лежит равнобокая трапеция, при условии, что ЛИШЬ 2 БОКОВЫХ РЕБРА ND и DC образуют с плоскостью основания угол 60°:

NA= NB = 9√2, ND= DC = 9.


Основанием пирамиды является равнобокая трапеция, боковая страна которой равна 9 см, а острый угол 6
Основанием пирамиды является равнобокая трапеция, боковая страна которой равна 9 см, а острый угол 6
4,8(55 оценок)
Ответ:
gazizullinnafi
gazizullinnafi
02.08.2020

Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас

Объяснение:

Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас

4,5(95 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ