Теорема о медиане в прямоугольном треугольнике гласит: "Медиана треугольника, проведенная к некоторой стороне, равна половине этой стороны тогда и только тогда, когда этот треугольник прямоугольный". Действительно, если треугольник прямоугольный, то, проводя медиану из вершины прямого угла (пусть это будет медиана CN, С - вершина прямого угла), N - центр описанной окружности около этого прямоугольного треугольника, ибо на СN опирается прямой угол, тогда получается, что точка N равноудалена от вершин треугольника. Ну а если получается так, что в треугольнике (ABC, например) проведена медиана CN, и она равна равна половине стороны, которую делит пополам, то N - центр описанной окружности около этого треугольника, но AB - это диаметр, на него опирается угол C, а это возможно, когда угол С прямой.
опустим высоту и рассмотрим прямоугольный треугольник, образованный высотой, боковой стороной и частью большего основания трапеции. по теореме Пифагора находим меленький отрезок на большем основании трапеции 13 ²=12²+х² х²=13²-12² х²=169-144 х²=25 х=5 т.к. это трапеция равнобедренная, с двух сторон будут одинаковые отрезки отрезки, значит, большее основание будет равно: 5+5+7=17 (см) Площадь трапеции равна: средняя линия*высоту. Средняя линия равна: (7+17)/2=12(см) Отсюда площадь равна: 12*12=144 (см²)
опустим высоту и рассмотрим прямоугольный треугольник, образованный высотой, боковой стороной и частью большего основания трапеции. по теореме Пифагора находим меленький отрезок на большем основании трапеции 13 ²=12²+х² х²=13²-12² х²=169-144 х²=25 х=5 т.к. это трапеция равнобедренная, с двух сторон будут одинаковые отрезки отрезки, значит, большее основание будет равно: 5+5+7=17 (см) Площадь трапеции равна: средняя линия*высоту. Средняя линия равна: (7+17)/2=12(см) Отсюда площадь равна: 12*12=144 (см²)
Теорема о медиане в прямоугольном треугольнике гласит: "Медиана треугольника, проведенная к некоторой стороне, равна половине этой стороны тогда и только тогда, когда этот треугольник прямоугольный". Действительно, если треугольник прямоугольный, то, проводя медиану из вершины прямого угла (пусть это будет медиана CN, С - вершина прямого угла), N - центр описанной окружности около этого прямоугольного треугольника, ибо на СN опирается прямой угол, тогда получается, что точка N равноудалена от вершин треугольника. Ну а если получается так, что в треугольнике (ABC, например) проведена медиана CN, и она равна равна половине стороны, которую делит пополам, то N - центр описанной окружности около этого треугольника, но AB - это диаметр, на него опирается угол C, а это возможно, когда угол С прямой.
ответ: нет, не верно.