М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lolologhka
lolologhka
20.07.2020 18:59 •  Геометрия

Квадрат вписан в окружность радиуса 4 см. найдите сторону, периметр,площадь, радиусы вписанной и описанной окружности, площадь многоугольника.​

👇
Открыть все ответы
Ответ:
ggggdcdxf
ggggdcdxf
20.07.2020
Теорема про три перпендикуляри. Якщо пряма, проведена на площині через основу похилої, перпендикулярна до її проекції, то вона перпендикулярна і до похилої. І навпаки, якщо пряма на площині перпендикулярна до похилої, то вона перпендикулярна і до проекції похилої.На малюнку 415 АН - перпендикуляр до площини α; АМ - похила. Через основу похилої - точку М проведено пряму а. Теорема про три перпендикуляри стверджує, що якщо а  НМ, то а  АМ, і навпаки, якщо а  АМ, то а  НМ.

Приклад 1. З вершини квадрата АВСD проведено перпендикуляр АК до площини квадрата. Знайти площу квадрата, якщо КD = 5 см; КС = 13 см.Розв’язання (мал. 416). 1) АК  АВС; КD - похила; АDБ - її проекція. Оскільки АD  DС, то за теоремою про три перпендикуляри маємо КD  DС.3) Тоді площа квадрата S = 82 = 64 (см2).

Приклад 2. Сторони трикутника довжиною 4 см, 13 см і 15 см. Через вершину найбільшого кута до площини трикутника проведено перпендикуляр і з його кінця, що не належить трикутнику, проведено перпендикуляр завдовжки 4 см до протилежної сторони цього кута. Знайти довжину перпендикуляра, проведеного до площини трикутника.Розв’язання. 1) У ∆АВС: АВ = 4 см; ВС = 13 см; АС = 15 см. Оскільки АС - найбільша сторона трикутника, то АВС - найбільший кут трикутника. ВК  АВС (мал. 417).2) КМ  АС, тоді за теоремою про три перпендикуляри: ВМ  АС, тобто ВМ - висота ∆АВС. За умовою: КМ = 4см.3) Знайдемо площу трикутника АВС за формулою Герона.4) 3 іншого боку 
4,4(28 оценок)
Ответ:
rootme
rootme
20.07.2020

Решение

Пусть ABCDA1B1C1D1 – данная призма, основания ABCD и A1B1C1D1 которой – ромбы со стороной 2, причём  DAB = 30o и AA1 = BB1 = CC1 = DD1 = 1 . Если DF – высота ромба ABCD , опущенная на сторону AB , то по теореме о трёх перпендикулярах D1F  AB , поэтому DFD1 – линейный угол двугранного угла между плоскостями основания ABCD и диагонального сечения AD1C1B . Так как DF = AD sin 30o = 1 , то tg  DFD1 =  = 1 . Поэтому  DFD1 = 45o < 60o . Значит, данная в условии секущая плоскость пересекает рёбра A1D1 и B1C1 . Обозначим через M и N соответствующие точки пересечения. Поскольку плоскости оснований параллелепипеда параллельны, а также параллельны плоскости противоположных боковых граней, то четырёхугольник AMNB – параллелограмм. Пусть MP – перпендикуляр, опущенный из точки M на плоскость основания ABCD . Поскольку плоскости AA1D1D и ABCD перпендикулярны, точка P лежит на их прямой пересечения AD . Если MQ – высота параллелограмма AMNB , опущенная на сторону AB , то по теореме о трёх перпендикулярах PQ  AB , поэтому MQP – линейный угол двугранного угла между плоскостями AMNB и ABCD . По условию задачи  MQP = 60o . Значит,

MQ =  =  = .

Следовательно,

SAMNB = AB· MQ = 2·  = .

Объяснение:

4,6(27 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ