1) Два угла, у которых одна сторона общая, называются смежными. - нет 2) В любом треугольнике высоты или их продолжения пересекаются в одной точке. - да 3) Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. - да 4) В равнобедренном треугольнике высота, проведенная к основанию, является медианой и биссектрисой. - да 5) Любой диаметр окружности есть хорда. - да 6) Сумма углов прямоугольного треугольника равна 180. - да 7) Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется высотой треугольника. - нет 8) В треугольнике может быть два тупых угла. - нет 9) Сумма двух сторон треугольника меньше третьей стороны треугольника. - нет 10) Все точки каждой из двух параллельных прямых равноудалены от другой прямой. - да 11) Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и углу другого прямоугольного треугольника, то такие треугольники равны. - да 12) Две прямые, перпендикулярные к третьей, не пересекаются. - да 13)Медиана, проведенная из вершины прямого угла прямоугольного треугольника равна половине гипотенузы. - да
вектор ас имеет проекции
ас х = (4 - 0) = 4; ас у = (3 - 3) = 0
ас (4; 0)
вектор bс имеет проекции
bс х = (4 - 4) = 0; bс у = (3 - 0) = 3
bс (0; 3)
найдём скалярное произведение векторов ас и bс
ас · bс = (4 · 0 + 0 · 3) = 0
следовательно векторы ас и вс перпендикулярны.
угол асв - прямой и опирается на диаметр аb
Найдём диаметр ав
IabI = √(0 + 4)² + (3 + 0)² = 5
Радиус окружности равен половине диаметра R = 2,5.
Центр окружности O расположен посредине между точками а и b
Найдём координаты точки О
xО = (0 + 4)/2 = 2; уО = (3 + 0)/2 = 1,5
Запишем уравнение окружности (х - хО)² + (у - уО)² =R²
(х - 2)² + (у - 1,5)² = 2,5²