Русский писатель-сатирик, журналист и т.д .Каждый из великих писателей национальной литературы занимает в ней свое особое, только ему принадлежащее место. Главное своеобразие М. Е. Салтыкова-Щедрина в русской литературе заключается в том, что он был и остается в ней крупнейшим представителем социальной критики и обличения. Островский называл Щедрина “пророком” и ощущал в нем “страшную поэтическую силу”.
Салтыков-Щедрин выбрал, как мне кажется, самый сложный жанр литературы — сатиру. Ведь сатира — это вид комического, наиболее беспощадно высмеивающий действительность и, в отличие от юмора, не дающий шанса на исправление.
3. Писатель проявил себя во многих жанрах литературы. Из-под его пера вышли романы, хроники, повести, рассказы, очерки, пьесы. Но наиболее ярко художественный талант Салтыкова-Щедрина выражен в его знаменитых “Сказках”. Сам писатель определил их так: “Сказки для детей изрядного возраста”. Они сочетают в себе элементы фольклора и авторской литературы: сказки и басни. 3. В них наиболее полно отражены жизненный опыт и мудрость сатирика. Несмотря на злободневные политические мотивы, сказки все равно сохраняют все обаяние народного творчества: “В некотором царстве Богатырь родился. Баба-Яга его родила, вспоила, вскормила…” (“Богатырь”).
Многие сказки Салтыков-Щедрин создал путем использования приема иносказания. Эту свою манеру письма автор назвал эзоповским языком по имени древнегреческого баснописца Эзопа, который в давние времена пользовался таким же приемом в своих баснях. Эзопов язык был одним из средств защиты щедринских произведений от терзавшей их царской цензуры.
Треугольник самая распространенная фигура. В лесу, когда мы смотрим на ель и ее тень, то перед нами представляется равнобедренный треугольник.
На магических символах.
Предметы обихода: треуголки, вырезы на одежде.
Музыкальные инструменты.
ТРЕУГОЛЬНИК, самозвучащий музыкальный инструмент — стальной прут, согнутый в виде треугольника, по которому ударяют палочкой. Применяется в оркестрах и инструментальных ансамблях.
“Египетский” треугольник
Среди бесконечного количества возможных прямоугольных треугольников, особый интерес всегда вызывали так называемые «пифагоровы треугольники», стороны которых являются целыми числами. Несомненно, «пифагоровы треугольники» также относятся к разряду «сокровищ геометрии», а поиски таких треугольников представляют одну из из интереснейших страниц в истории математики. Наиболее широко известным из них является прямоугольный треугольник со сторонами 4, 3 и 5. Он назывался также «священным» или «египетским», так как он широко использовался в египетской культуре
Проекции таких отрезков на основание равны половинам катетов треугольника.
А сами отрезки определим по Пифагору:
L1=√(2,5² + 6²) = √(6,25 + 36) = √42,25 = 6,5 см.
L2=√(4,5² + 6²) = √(20,25 + 36) = √56,25 = 7,5 см.