Теорема . три высоты любого треугольника пересекаются в одной точке. доказательство: пусть abc - данный треугольник . пусть прямые, содержащие высоты ap и bq треугольника abc пересекаются в точке o. проведем через точку a прямую, параллельную отрезку bc, через точку b прямую, параллельную отрезку ac, а через точку c - прямую, параллельную отрезку ab. все эти прямые попарно пересекаются. пусть точка пересечения прямых, параллельных сторонам ac и bc - точка m, точка пересечения прямых, параллельных сторонам ab и bc - точка l, а прямых, параллельным ab и ac - точка k. точки klm не лежат на одной прямой, (иначе бы прямая ml совпадала бы с прямой mk, а значит, прямая bc была бы параллельна прямой ac, или совпадала бы с ней, то есть точки a, b и c лежали бы на одной прямой, что противоречит определению треугольника) . итак, точки k, l, m составляют треугольник. ma параллельно bc, и mb параллельно ac по построению. а значит, четырёхугольник macb - параллелограмм. следовательно, ma = bc, mb = ac. аналогично al = bc = ma, bk = ac = mb, kc = ab = cl. значит, ap и bq - серединные перпендикуляры к сторонам треугольника klm. они пересекаются в точке o, а значит, co - тоже срединный перпендикуляр. co перпендикулярно kl, kl параллельно ab, а значит co перпендикулярно ab. пусть r - точка пересечения ab и cq. тогда cr перпендикулярно ab, то есть cr - это высота треугольника abc. точка o принадлежит всем прямым, содержащим высоты треугольника abc. значит, прямые, содержащие высоты этого треугольника пересекаются в одной точке. что и требовалось доказать. может правильно )
Доказательство: пусть угол abc - вписанный угол окружности с центром o, опирающийся на дугу ac. докажем, что abc=1/2 дуги ac. есть 2 возможных варианта расположения луча bo относительно угла abc 1) луч ob совпадает с одной из сторон угла abc, например со стороной bc. в этом случае дугаac меньше полуокружности, поэтому угол aoc=дуге ac. так как угол aoc - внешний угол равнобедренного треугольника abo, ф углы 1 и 2 при основании равнобедренного треугольника равны, то угол aoc=уг.1+уг.2=2 уг.1отсюда следует, что 2 угол 1=дуг.ac или угол abc=уг1=1/2 дуги ac 2) луч bo делит угол abc на два угла. в этом случае луч bo пересекает дугу ac в некоторой точке d. точка d разделяет дугу ac на две дуги: дуга ad и дуга dc. по доказанному в номере один, угол abd=1/2 дуги ad и угdbc=1/2 дуги ad+1/2 дугиdc. складывая эти равенства попарно, получаем: угол abd+dbc=1/2 дуг ad+1/2 дугdc, или угол abc=1/2 дуги ac
Пусть АВ=13, ВС=14, АС=15.
По теореме косинусов
АВ²=АС²+ВС²-2*АС*ВС*cosС
169=225+196-420cosС
420cosС=252
cosС=0,6; ∠С≈53°;
ВС²=АВ²+АС²-2*АВ*АС*cosА
196=169+225-390cosА
390cosА=198
cosА=0,5076; ∠А≈60°
∠С=180-(53+60)=67°
ответ: 53°; 60°; 67°.