Строим острый угол В. Из вершины угла проводим окружность радиусом равным катету, и отмечаем точку пересечения А. Так как треугольник — прямоугольный, то восстанавливаем перпендикуляр из точки А. Полученная точка пересечения С. Соединяем попарно вершины треугольника. Искомый треугольник построен.
Если задать некую точку Е1, лежащую на середине стороны СD, и соединить точки Е и Е1 в отрезок, этот отрезок рассечёт параллелограмм на два конгруэнтные, равные по всем параметрам параллелограммы. И станет очевидно, что отрезок ЕD (как и отрезок Е1A для высеченного параллелограмма DAEE1) рассекает высеченный из параллелограмма АВСD параллелограмм ЕЕ1ВС на два равных по всем параметрам треугольника. ЕЕ1С и ЕСВ. Таким образом становится очевидно, что отрезок ЕС отсекает от параллелограмма АВСD ровно одну четверть. То есть, площать трапеции DAEC равна 3/4 от 60. 60:4×3=45 - площадь трапеции DAEC.
1. 13
Объяснение:
1.
Проведём FH перпендикулярно DE следовательно треугольник FHE прямоугольный.Треугольник DCE прямоугольный следовательно треугольник FCE тоже прямоугольный.
EF- биссектриса следовательно угол 1 = углу 2.Следовательно FHE= FCE(по острому углу) следовательно FH=FC=13
ответ: 13
2.
Строим острый угол В. Из вершины угла проводим окружность радиусом равным катету, и отмечаем точку пересечения А. Так как треугольник — прямоугольный, то восстанавливаем перпендикуляр из точки А. Полученная точка пересечения С. Соединяем попарно вершины треугольника. Искомый треугольник построен.
(Рисунок в закрепе)
3.