Основою прямої abcda1b1c1d1 є прямокутник зі сторонами 4 см і 4√3см. площина, що проходить через вершини a, b1 і c призми утворює з площини її основи кут 60°. визначити h призми.
Так как РН⊥пл. АВС и точка Р равноудалена от вершин ΔАВС, то точка Н есть центр описанной около ΔАВС окружности. Найдём радиус описанной окружности по формуле R=abc/4S , где R=AH=BH=CH . S найдём по формуле Герона. p=P/2=(6+25+29)/2=60/2=30 S=√p(p-a)(p-b)(p-c)=√(30·24·5·1)=√3600=60 R=(6·25·29)/(4·60)=4350/240=145/8=18,125 Рассм. ΔАРН. ∠РАН - угол между АР и пл. АВС, так как РН⊥ пл.АВС ⇒ РН⊥АН , ∠PHA=90°. АН - проекция наклонной АР на пл.АВС,РН=15. tg∠PAH=PH/AH=15/18,125=15/(145/8)=(15·8)/145=120/145=24/29 ∠PAH=arctg24/29
Треугольники называются равными, если все углы и все стороны одного треугольника соответственно равны всем углам и всем сторонам другого треугольника. Существуют теоремы, на основании которых можно доказать, что некоторые треугольники равны. 1) Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. 2) Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. 3) Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
6 см
Объяснение:
Так как призма прямая, ее высотой является боковое ребро.
Проведем ВK⊥AC. ВK - проекция В₁К на плоскость основания, значит
В₁К⊥АС по теореме о трех перпендикулярах, тогда
∠В₁КВ = 60° - линейный угол двугранного угла между плоскостями (АВ₁С) и (АВС).
Из прямоугольного треугольника АВС по теореме Пифагора найдем АС:
АС = √(АВ² + ВС²) = √(48 + 16) = √64 = 8 см
Найдем ВК - высоту прямоугольного треугольника АВС :
Sabc = 1/2 AC · BK = 1/2 AB · BC
BK = AB ·BC / AC = 4√3 · 4 / 8 = 2√3 см
ΔВВ₁К: tg∠B₁KB = BB₁ / BK
BB₁ = BK · tg60° = 2√3 · √3 = 6 см