Вравнобедренном треугольнике kcm с основанием km сторона см = 6м, km = 10м и угол ксм = 120°. найти скалярное произведение векторов кс * се, если се - медиана данного треугольника.
Для того, чтобы определить географические координаты точки, возьмите карту с обозначением меридианов и параллелей. Учтите, чем больше будет частота этих линий и подробнее карта, тем точнее вам удастся определить широту и долготу, из которых состоят любые координаты. 2 Чтобы найти широту, используйте горизонтальные линии, начерченные на карте – параллели. Определите, на какой параллели находится ваша точка, и найдите ее значение в градусах. Около каждой горизонтальной параллели есть обозначение в градусах (слева и справа). Если точка расположена прямо на ней, смело делайте вывод о том, что ее широта равна этому значению. 3 Если же выбранное место лежит между двумя параллелями, указанными на карте, определите широту ближайшей к нему параллели и прибавьте к ней длину дуги в градусах до точки. Длину дуги посчитайте при транспортира или примерно, на глаз. Например, если точка посередине между параллелями 30º и 35º, то ее широта будет равна 32,5º. Поставьте обозначение N, если точка расположена над экватором (северная широта) и обозначение S, если она находится под экватором (южная широта). 4 Определить долготу вам меридианы – вертикальные линии на карте. Найдите меридиан, ближе всего расположенный на карте к вашей точке и посмотрите его координаты, указанные сверху и снизу (в градусах). Измерьте с транспортира или прикиньте на глаз длину дуги между этим меридианом и выбранным местом. Прибавьте полученное расстояние в градусах к найденному значению долготы и получите долготу искомой точки.
Под углом между скрещивающимися прямыми понимается угол между параллельными им прямыми, проходящими через одну точку. Проведем через точку `M` в плоскости основания прямую `MK`, параллельную `CL`(`K` - точка ее пересечения со стороной `AB`. Тогда искомый угол - это `/_DMK`. Найдем его с теоремы косинусов из треугольника `DMK` Так все ребра тетраэдра равны (вспоминаем определение правильного тетраэдра) , то треугольники `DBC`,`ABC`и `ADB` правильные и `CL=DM=DL=sqrt(3)/2`. `MK` - средняя линия в треугольнике `BCL`: `MK=sqrt(3)/4` `DK` находим из прямоугольного треугольника `DLK`: `DK=sqrt((1/4)^2+(sqrt(3)/2)^2)=sqrt(13)/4 По теореме косинусов `DK^2=MK^2+DM^2-2*MK*DMcos(/_DMK)` Откуда `cos(/_DMK)=1/6` `/_DMK=arc cos(1/6)` ответ: `arc cos(1/6)`
ответ: во вложении Объяснение: