Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
ответ: 6,6
Вариант решения.
Формула площади треугольника S=a•h/2 => h=2S:a.=>
Чем больше сторона треугольника, тем меньше высота, которая к ней проведена.
Пусть высота, проведенная к стороне 20, делит ее на отрезки х и 20-х, и образует два прямоугольных треугольника, гипотенузы которых - другие стороны исходного треугольника.
Выразим квадрат высоты из 1-го треугольника по т.Пифагора:
h²= 11²-х²
Аналогично – то же из второго треугольника:
h²=13²-(20-x)²
Приравняем эти значения
11²-х²=13²-(20-x)² Решив уравнение, получим
40х=352
х=8,8
Из меньшего треугольника по т.Пифагора
h=√(121-77,4)= 6,6 ( ед. длины)