Разветвляющимися называется такой алгоритм, в котором выбирается один из нескольких возможных вариантов вычислительного процесса. каждый подобный путь называет "ветвью алгоритма".
признаком разветвляющегося алгоритма является наличие операций проверки условия. различают два вида условий – простые и составные.
простым условием (отношением) называется выражение, составленное из двух арифметических выражений или двух текстовых величин (иначе их еще ), связанных одним из знаков:
< - меньше,
> - больше,
< = - меньше, или равно
> = - больше, или равно
< > - не равно
= - равно
например, простыми отношениями являются следующие:
1. С=2*Pi*R, S= Pi*R^2, V=4/3*Pi*R^3, где Pi=3,14, заданный радиус R 2. P=a+b, S=1/2*a*b, где a и b - данные катеты 3. Пусть даны координаты трех вершин треугольника A(x1;y1), B(x2;y2), C(x3;y3). Расстояние между двумя точками вычисляется по формуле Тогда периметр треугольника можно вычислить по формуле: P=sqrt((x2-x1)^2+(y2-y1)^2)+sqrt((x3-x2)^2+(y3-y2)^2)+sqrt((x3-x1)^2+(y3-y1)^2). Площадь треугольника по формуле Герона вычисляется по формуле: , где -полу периметр треугольника. S=sqrt((sqrt((x2-x1)^2+(y2-y1)^2)+sqrt((x3-x2)^2+(y3-y2)^2)+sqrt((x3-x1)^2+(y3-y1)^2)/2*(sqrt((x2-x1)^2+(y2-y1)^2)+sqrt((x3-x2)^2+(y3-y2)^2)+sqrt((x3-x1)^2+(y3-y1)^2)/2-sqrt((x2-x1)^2+(y2-y1)^2))*(sqrt((x2-x1)^2+(y2-y1)^2)+sqrt((x3-x2)^2+(y3-y2)^2)+sqrt((x3-x1)^2+(y3-y1)^2)/2-+sqrt((x3-x2)^2+(y3-y2)^2))*(sqrt((x2-x1)^2+(y2-y1)^2)+sqrt((x3-x2)^2+(y3-y2)^2)+sqrt((x3-x1)^2+(y3-y1)^2)/2-sqrt((x3-x1)^2+(y3-y1)^2)) 4. Среднее геометрическое трех чисел вычисляется по формуле или (a*b*c)^1/3
признаком разветвляющегося алгоритма является наличие операций проверки условия. различают два вида условий – простые и составные.
простым условием (отношением) называется выражение, составленное из двух арифметических выражений или двух текстовых величин (иначе их еще ), связанных одним из знаков:
< - меньше,
> - больше,
< = - меньше, или равно
> = - больше, или равно
< > - не равно
= - равно
например, простыми отношениями являются следующие:
x-y> 10; k< =sqr(c)+abs(a+b); 9< > 11; ‘мама’< > ‘папа’.
в примерах первые два отношения включают в себя переменные, поэтому о верности этих отношений можно судить только при подстановке некоторых значений:
если х=25, у=3, то отношение x-y> 10 будет верным, т.к. 25-3> 10
если х=5, у=30, то отношение x-y> 10 будет неверным, т.к. 5-30< 10
проверьте верность второго отношения при подстановке следующих значений:
а) k=5, a=1, b=-3, c=-8
b) k=65, a=10, b=-3, c=2