М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
fuvgkvu
fuvgkvu
27.06.2021 12:58 •  Информатика

6 сынып Информатика сабағы. дал казыр керек 1 тапсырма

👇
Открыть все ответы
Ответ:
StefaLandon
StefaLandon
27.06.2021

со́товый телефо́н — мобильный телефон, предназначенный для работы в сетях сотовой связи; использует приёмопередатчик радиодиапазона и традиционную телефонную коммутацию для осуществления телефонной связи на территории зоны покрытия сотовой сети.

в настоящее время сотовая связь —
самая распространённая из всех видов мобильной связи, поэтому обычно мобильным телефоном называют именно сотовый телефон, хотя мобильными телефонами, помимо сотовых, являются также спутниковые телефоны, радиотелефоны и аппараты магистральной связи.

сотовый телефон — сложное
высокотехнологичное электронное устройство, включающее в себя: приёмопередатчик на поддиапазоны 1—2 ггц (gsm) и 2—4 ггц (umts) свч-диапазона, специализированный контроллер , дисплей, интерфейсные устройства, аккумулятор. большинство аппаратов имеет свой уникальный номер, т. н. imei — международный
идентификатор мобильного устройства. imei присваивается при производстве сотового телефона и состоит из 15 цифр; он записывается в немодифицируемую часть прошивки телефона. сам этот номер отпечатан на этикетке телефона под аккумулятором, также на коробке (упаковке) от телефона (под штрихкодом). в
большинстве телефонов его также можно узнать, набрав на клавиатуре код *#06#

4,8(15 оценок)
Ответ:
DruNastya
DruNastya
27.06.2021

, связанные с определением количества информации, занимают довольно большое место как в общем курсе 9-11 классов, так и при итоговой аттестации разного типа.

обычно решение подобных не представляет трудности для учащихся с хорошими способностями к анализу ситуаций. но большинство
учеников поначалу путаются в понятиях и не знают, как приступить к решению.

тем не менее, к 9-му классу учащиеся уже имеют определенный опыт решения по другим предметам (более всего – ) с применением формул. определить, что в дано, что необходимо найти, и выразить одну переменную
через другую – действия довольно привычные, и с ними справляются даже слабые ученики. представляется возможным ввести некоторые дополнительные формулы в курсе информатики и найти общий стиль их применения в решении .

оттолкнемся от одной из главных формул информатики – формулы хартли
n=2i. при ее использовании учащиеся могут еще не знать понятия логарифма, достаточно вначале иметь перед глазами, а затем запомнить таблицу степеней числа 2 хотя бы по 10-й степени.

при этом формула может применяться в решении разного типа, если правильно определить систему
обозначений.

выделим в системе на количество информации следующих типов:

количество информации при вероятностном подходе;

кодирование положений;

количество информации при алфавитном подходе (кодирование текста);

кодирование графической
информации;

кодирование звуковой информации

все группы a (в случае, если мы имеем дело с равновероятными событиями) решаются непосредственно по формуле хартли с ее привычными обозначениями:

n – количество равновероятных событий;

i – количество бит в сообщении
о том, что событие произошло,

причем в может быть определена любая из переменных с найти вторую. в случае если число n не является непосредственно числом, представляющим ту или иную степень числа 2, количество бит нам необходимо определить «с запасом». так для гарантированного угадывания
числа в диапазоне от 1 до 100 необходимо задать минимально 7 вопросов (27=128).

решение для случаев неравновероятных событий в этой статье не рассматривается.

для решения групп b-e дополнительно введем еще одну формулу:

q=k*i

и определим систему
обозначений для разного типа.

для группы b значение переменных в формуле хартли таково:

i – количество «двоичных элементов», используемых для кодирования;

n – количество положений, которые можно закодировать посредством этих элементов.

так:


два флажка позволяют передать 4 различных сообщения;

с трех лампочек можно потенциально закодировать 8 различных сигналов;

последовательность из 8 импульсов и пауз при передаче информации посредством электрического тока позволяет закодировать 256 различных текстовых знаков;

и т.п.

рассмотрим структуру решения по формуле:

1: сколько существует различных последовательностей из символов «плюс» и «минус» длиной ровно в пять символов?

дано: i = 5

найти: n

решение: n = 25


ответ: 5

каждый элемент в последовательности для кодирования несет один бит информации.

очевидно, что при определении количества элементов, необходимых для кодирования n положений, нас всегда интересует минимально необходимое для этого количество бит.


при однократном кодировании необходимого количества положений мы определяем необходимое количество бит и ограничиваемся формулой хартли. если кодирование проводится несколько раз, то это количество мы обозначаем как k и, определяя общее количество информации для всего кода (q), применяем
вторую формулу.

2: метеорологическая станция ведет наблюдение за влажностью воздуха, результатом которых является целое число от 1 до 100%, которое кодируется посредством минимально возможного количества бит. станция сделала 80 измерений. какой информационный объем результатов
наблюдений.

дано: n = 100; k = 80

найти: q

решение:

по формуле хартли i = 7 (с запасом); q = 80 * 7 = 560

ответ: 560 бит

(если в даны варианты ответов с использованием других единиц измерения количества
информации, осуществляем перевод: 560 бит = 70 байт).

отметим дополнительно, что, если для кодирования используются нe «двоичные», а скажем, «троичные» элементы, то мы меняем в формуле основание степени.


4,6(1 оценок)
Это интересно:
Новые ответы от MOGZ: Информатика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ