#include <iostream>
using namespace std;
// функция с алгоритмом двоичного поиска
int Search_Binary (int arr[], int left, int right, int key)
{
int midd = 0;
while (1)
{
midd = (left + right) / 2;
if (key < arr[midd]) // если искомое меньше значения в ячейке
right = midd - 1; // смещаем правую границу поиска
else if (key > arr[midd]) // если искомое больше значения в ячейке
left = midd + 1; // смещаем левую границу поиска
else // иначе (значения равны)
return midd; // функция возвращает индекс ячейки
if (left > right) // если границы сомкнулись
return -1;
}
}
int main()
{
setlocale (LC_ALL, "rus");
const int SIZE = 12;
int array[SIZE] = {};
int key = 0;
int index = 0; // индекс ячейки с искомым значением
for (int i = 0; i < SIZE; i++) // заполняем и показываем массив
{
array[i] = i + 1;
cout << array[i] << " | ";
}
cout << "\n\nВведите любое число: ";
cin >> key;
index = Search_Binary (array, 0, SIZE, key);
if (index >= 0)
cout << "Указанное число находится в ячейке с индексом: " << index << "\n\n";
else
cout << "В массиве нет такого числа!\n\n";
return 0;
}
Решение.
1. Запишем числа маски сети в двоичной системе счисления:
25510 = 111111112
24810 = 111110002
010 = 000000002
2. Адрес сети получается в результате поразрядной конъюнкции чисел маски и чисел адреса узла (в двоичном коде). Так как конъюнкция 0 с чем-либо всегда равна 0, то на тех местах, где числа маски равны 0, в адресе узла стоит 0. Аналогично, там, где числа маски равны 255, стоит само число, так как конъюнкция 1 с любым числом всегда равна этому числу.
3. Рассмотрим конъюнкцию числа 248 с числом 243.
24810 = 111110002
24310 = 111100112
Результатом конъюнкции является число 111100002 = 240.
4. Сопоставим варианты ответа получившимся числам: 216, 23, 240, 0.