Треугольник паскаля исправить ошибки в программе и получить представленный результат. записать вместо 0 и 1 нужно расставить соответствующие числа для треугольника паскаля const m=10; var a: array {1..m, 1..m} of integer; n,i,j: integer; repeat write('vvedeti pazmernost massiv' ); readln(n); for j: =1 to n do begin a{1,j}: =1; a{i,1}: =1; end; for i: =to n do for j: =2 to m do; a{i,j}: =a{i-1,}+a{i,j-1}; for i: =1 to n do begin for j: = to(n-i+1) do write(a{i,}); readln ; end ; 0< 100; end. и вопросы: 1 сколько чисел в 3 строке треугольника паскаля? в n-ой строке? 2 в каких строках треугольника число встречается только 1 раз? 3 в каких строках треугольника число встречается равно 2 раза? 4 как чередуются четные и нечетны числа нужно !
Приведём все числа к степеням тройки, учитывая, что
25 = 27-2 = 3^3-2∙3^0
27^4 – 9^5 + 3^8 – 25 = (3^3)^4 - (3^2)^5 + 3^8 - 3^3 + 2∙3^0 =
(3^12 - 3^10) + (3^8 - 3^3) + 2∙3^0
Найдем значение разности в первой скобке, учитывая что 12-ая степени тройки в троичной системе это 1000000000000(3), а 10-ая степень - это 10000000000(3)
1000000000000(3)
-
10000000000(3)
220000000000(3)
Т.е. в троичной записи 12–10 = 2 «двойки» и 10 «нулей».
Вычислим аналогично вторую скобку:
100000000(3)
-
1000(3)
22222000(3)
Т.е. в троичной записи 8–3 = 5 «двоек» и 3 «нуля».
Таким образом, общее количество двоек = 2+5+1 = 8
2) 3∙16^8 – 4^5 + 3 (см. рис)
Приведём все числа к степеням четверки:
3∙16^8 – 4^5 + 3 = 3∙(4^2)^8 – 4^5 + 3∙4^0 = 3∙4^16 – 4^5 + 3∙4^0
Найдем значение разности, учитывая что 3∙4^16 в системе счисления с основанием 4 это одна «тройка» и 16 «нулей», а 4^5 - это одна «единица» и 5 «нулей»:
30000000000000000(4)
-
100000(4)
23333333333300000(4) (одна «двойка», 11 «троек» и 5 «нулей»)
Таким образом, общее количество троек = 11+1 = 12
3) 4^1024 + 8^1025 – 2^1026 – 140
Количество значащих нулей равно количеству всех знаков в двоичной записи числа минус количество единиц.
Приведём все числа к степеням двойки, учитывая, что 140 = 128 + 8 + 4
4^1024 + 8^1025 – 2^1026 – 140 =
(2^2)^1024 + (2^3)^1025 – 2^1026 – (2^7+2^3+2^2) =
2^3075 + 2^2048 – 2^1026 – 2^7 - 2^3 - 2^2
Старшая степень двойки – 3075, двоичная запись этого числа представляет собой единицу и 3075 нулей, то есть, состоит из 3076 знаков; таким образом, остаётся найти количество единиц.
Представим далее -2^1026 = -2^1027 + 2^1026, получим:
2^3075 + 2^2048 - 2^1027 + 2^1026 – 2^7 - 2^3 - 2^2
Аналогично – 2^7 = - 2^8 + 2^7, получим:
2^3075 + 2^2048 - 2^1027 + 2^1026 - 2^8 + 2^7 - 2^3 - 2^2
И, наконец, - 2^3 = - 2^4 + 2^3
2^3075 + (2^2048 - 2^1027) + (2^1026 - 2^8) + (2^7 - 2^4) + (2^3 - 2^2)
Вспомним свойство: число 2^N–2^K при K < N записывается как N–K единиц и K нулей.
Общее число единиц = 1+(2048-1027)+(1026-8)+(7-4)+(3-2) = 2044
Таким образом, количество значащих нулей равно 3076-2044 = 1032