М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
9petya
9petya
06.10.2020 15:34 •  Информатика

В какие годы создавались компьютеры І поколения? В 1946 – 1958 годы
В 1958 – 1964 годы
В 1964 – 1971 годы
В 1956 – 1960 годы
В 1950 – 1960 годы​

👇
Открыть все ответы
Ответ:
tanshka
tanshka
06.10.2020
1. Находим решение первого неравенства.
x(x+2)54; \ x^2+2x-54 0
Для того, чтобы решить неравенство, попытаемся сначала определить, если ли у квадратного трехчлена, стоящего в левой части, нули.
x^2+2x+54=0; \ D=4+4*54=4*55
Поскольку дискриминант положительный, имеются два вещественных корня.
Найдем их.
\sqrt{D}=2 \sqrt{55}; \ x= \frac{-2\mp 2 \sqrt{55}}{2}=-1\mp \sqrt{55}
Вспоминаем, что график квадратного трехчлена - парабола, ветви которой направлены вверх, если коэффициент при квадрате х положительный. Следовательно, левая часть неравенства будет положительной, когда аргумент будет или меньше меньшего из найденных корней уравнения, или больше большего.
x \in (-\infty;-1- \sqrt{55}) \ \cup \ (-1+ \sqrt{55};+\infty)
Теперь следует решить второе неравенство.
x^280; \ |x|\sqrt{80} \to x \in (-\infty;- 4\sqrt{5}) \ \cup \ ( 4\sqrt{5};+\infty)
Поскольку нас интересует решение в натуральных числах, вычислим значения выражений, содержащих радикалы, с точностью до 1 знака после запятой. В дальнейшем мы заменим их натуральными числами.
Решения неравенств примут вид:
x \in (-\infty;-8.4) \ \cup \ (6.4;+\infty) \\ x \in (-\infty;-8.9) \ \cup \ (8.9;+\infty)
Исходное высказывание схематически выгладит как a ⇒ b
Найдем схематическое выражение, соответствующее его отрицанию и заменим a,b на найденные решения неравенств.
F=a \to b = \overline a \lor b; \\ \overline F=\overline{\overline a
 \lor b}=a \land \overline b; \\ F=(x \in (-\infty;-8.4) \ \cup \ 
(6.4;+\infty)) \land \overline{x \in (-\infty;-8.9) \ \cup \ 
(8.9;+\infty)}= \\ (x \in (-\infty;-8.4) \ \cup \ (6.4;+\infty)) \land 
(x \in [-8.9;8.9])= \\ (x \in (-\infty;-8.4) \cap [-8.9;8.9]) \cup (x 
\in (6.4;+\infty) \cap [-8.9;8.9])= \\ (x \in [-8.9;-8.4)) \cup (x \in 
(6.4;8.9])=x \in [-8.9;-8.4) \cup (6.4;8.9];
Теперь заменяем приближенные числа натуральными и находим окончательное решение.
x \in false \cup [7;8] \to x=8
ответ: х=8
4,7(85 оценок)
Ответ:
felikstatenko2
felikstatenko2
06.10.2020
Конте́кстное меню́ (англ. context menu) в графическом интерфейсе пользователя — меню, набор команд в котором зависит от выбранного, или находящегося под курсором в момент вызова объекта, а также состояния рабочей среды и программы, в которой этот объект находится — то, что в совокупности представляет собой контекст для этого меню. Вызов контекстного меню осуществляется как правило по нажатию «контекстной» (правой для правшей) кнопки мыши, специальной клавиши ( Menu ), или сочетания ( ⇧ Shift  +  F10  в Windows, или нажатие кнопки мыши при нажатой клавише  Control  в MacOS) на клавиатуре, а иногда — особыми жестами указывающего устройства (например — нажатием и удержанием).
4,7(77 оценок)
Новые ответы от MOGZ: Информатика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ