напишите программу, которая находит произведение второго и четвертого элемента массива, отсортированного по убыванию. массив состоит из 20 элементов в диапазоне (-24;47)
В двоичной системе: 1243(10)=2^10+2^7+2^6+2^4+2^3+2^1+1 = 1024+128+64+16+8+2+1 = 1243(10) =10011011011(2) В восьмиричной системе: разбиваете двоичное представление на группы по 3 бита справа налево 011 = 3 011 = 3 011 = 3 10 = 2 Тогда в восьмиричной системе: 2333(8) = 2*8^3+3*8^2+3*8^1+3 = 1024+192+24+3=1243(10) В шестнадцатиричной системе: разбиваете двоичное представление на группы по 4 бита справа налево 1011 = B = 11(10) 1101 = D(16) = 13(10) 100 = 4 Тогда в шестнадцатиричной системе 4DB(16) = 4*16^2+13*16^1+11 =1024+208+11=1243(10)
ПОСЛЕДОВАТЕЛЬНОСТЬ ФИБОНАЧЧИ, математическая ПОСЛЕДОВАТЕЛЬНОСТЬ, каждый член которой является суммой двух предыдущих. Таким образом, если энный член последовательности обозначается хn, то для всей последовательности справедливым будет уравнение: хn+2=хn+хn+1, первыми двумя членами которого будут x1=l и x2=1. Порядок последовательности при этом таков: 1, 1, 2, 3, 5, 8, 13, 21..., следующим числом будет 34, т. к. сумма 13 и 21 равна 34 и т.д. Когда число n становится очень большим, отношение соответствующих членов устремляется к величине (Ц5+l)/2. Это соотношение называется золотым. В природе последовательность Фибоначчи можно проследить на примерах спирального развития сегментов раковины и лепестков подсолнуха, расходящихся лучами из одной точки в центре цветка. см. также ЗОЛОТОЕ СЕЧЕНИЕ.
В восьмиричной системе: разбиваете двоичное представление на группы по 3 бита справа налево
011 = 3
011 = 3
011 = 3
10 = 2
Тогда в восьмиричной системе: 2333(8) = 2*8^3+3*8^2+3*8^1+3 = 1024+192+24+3=1243(10)
В шестнадцатиричной системе: разбиваете двоичное представление на группы по 4 бита справа налево
1011 = B = 11(10)
1101 = D(16) = 13(10)
100 = 4
Тогда в шестнадцатиричной системе
4DB(16) = 4*16^2+13*16^1+11 =1024+208+11=1243(10)