yxwz
Объяснение:
Чтобы значение функции (¬x ≡ z) → (y ≡ (w ∨ x)) было ложным, выражение ¬x ≡ z должно быть истинным, а выражение y ≡ (w ∨ x) – ложным. Чтобы первое выражение было истинным, переменные x и z должны иметь противоположные значения: 0 и 1 или 1 и 0.
Рассмотрим третью строку таблицы. Три переменных равны нулю, F = 0. Значит, оставшаяся переменная (переменная 2 в таблице) равна 1, и это z или x. Тогда y = 0, w = 0, и чтобы выражение y ≡ (w ∨ x) было ложным, необходимо, чтобы x = 1. Значит, второй столбец – x. Другой подходящей комбинации с тремя нулями быть не может, значит, в пустых клетках в первой и второй строках таблицы должны стоять единицы.
Поскольку x и z должны иметь разные значения, а x – это переменная 2, из первой и второй строк таблицы видим, что z – переменная 4.
Рассмотрим вторую строку. В ней x = 1, тогда w ∨ x= 1 независимо от значения w, и чтобы выражение y ≡ (w ∨ x) было ложным, необходимо, чтобы y = 0. Получается, что y – переменная 1, w – переменная 3.
Максимальное кол-во единиц при 126 полках с нулями и 2 полками с единицами
(1111000v000111=1111111 и 0000000v1000000=1000000) т..е. в 3 шкафу будет 126 полок с нулями и 2 полки с 8 единицами.
Минимальное кол-во при 127 полками нулей и 1 полкой единиц
(1111000v1111000=1111000) т.е. в 3м шкафу будет 127 полок с нулями и 1 полка с 4 единицами.
Значит максимум 8 единиц, а минимум 4