3. Дополнительное задание. Рассмотрите блок-схему. Приду- майте задачу, алгоритм решения которой может быть пред- ставлен с этой блок-схемы. При каких исходных данных в вашей задаче тело цикла не выполнится ни разу? Начало U1 p1 U2 D2 p3 Kohet
1) F=Av(¬A&B) По закону дистрибутивности раскроем скобки (Av¬A)&(AvB) Av¬A = 1, значит остаётся AvB
2) F =A&(¬AvB) По тому же закону раскрываем скобки (A&¬A)v(A&B) A&¬A = 0, значит остаётся A&B
3. (AvB)&(¬BvA)&(¬CvB) По закону склеивания (AvB)&(¬BvA) = A , получается, что выражение принимает вид A&(¬CvB) Можно раскрыть скобки, получим A&¬C v A&B
4) F =(1v(AvB))v((AC)&1) Скобка (1v(AvB)) = 1, так как 1 v ЧТОУГОДНО = 1 Получаем выражение 1v((AC)&1) = 1, так как 1 v ЧТОУГОДНО = 1 ответ 1
в кинозале всего 16×32=512 мест. Сообщение о купленном билете однозначно определяет выбор одного из этих мест. Из уравнения 2 i = 512=29получаем: i=9 бит. Но эту же задачу можно решать иначе. Сообщение о номере ряда несет 4 бита информации, т.к. 24=16. Сообщение о номере места несет 5 бит информации, т.к. 25=32. В целом сообщение про ряд и место несет: 4+5=9 бит информации. Данный пример иллюстрирует выполнение закона активности информации (правило сложения): количество информации в сообщении одновременно о нескольких результатах независимых друг от друга событий равно сумме количеств информации о каждом событии отдельно.
По закону дистрибутивности раскроем скобки
(Av¬A)&(AvB)
Av¬A = 1, значит остаётся AvB
2) F =A&(¬AvB)
По тому же закону раскрываем скобки
(A&¬A)v(A&B)
A&¬A = 0, значит остаётся A&B
3. (AvB)&(¬BvA)&(¬CvB)
По закону склеивания (AvB)&(¬BvA) = A , получается, что выражение принимает вид
A&(¬CvB)
Можно раскрыть скобки, получим
A&¬C v A&B
4) F =(1v(AvB))v((AC)&1)
Скобка (1v(AvB)) = 1, так как 1 v ЧТОУГОДНО = 1
Получаем выражение
1v((AC)&1) = 1, так как 1 v ЧТОУГОДНО = 1
ответ 1