7
Объяснение:
Пусть U = ¬(x ∈ {1,2,4,8,16}), V = ¬(x ∈ {3,4,9,16}), W = (x ∈ A). Тогда выражение имеет вид U ∧ V ∨ W = (U ∧ V) ∨ W
U истинно для всех x, кроме 1, 2, 4, 8 и 16.
V истинно для всех x, кроме 3, 4, 9 и 16.
Когда оба U, V истинны, тогда (и только тогда) истинно U ∧ V, а значит и всё выражение, так как 1 ∨ W = 1 при любом W.
U и V одновременно истинны для всех x, кроме 1, 2, 3, 4, 8, 9 и 16. Чтобы выражение для таких x было истинно, необходимо, чтобы было истинно W, то есть x принадлежало A.
Поэтому A обязательно принадлежат 1, 2, 3, 4, 8, 9 и 16 - 7 чисел. Возможно, A содержит и что-то ещё, но в вопросе интересуются множеством наименьшего размера, так что ответ 7.
1.В содержательном подходе количество информации, заключённое в сообщении, определяется объёмом знаний, который это сообщение несёт получающему его человеку. Один бит - это минимальная единица измерения количества информации. Сообщение, уменьшающее неопределённость знания в два раза, несёт один бит информации.
2.Вероятностный подход предполагает, что возможные события имеют различные вероятности реализации. ... Качественная связь между вероятностью события и количеством информации в сообщении состоит в следующем: чем меньше вероятность некоторого события, тем больше информации содержит сообщение об этом событии.
3.Эта единица называется бит. Сообщение, уменьшающее неопределенность знаний в два раза, несет 1 бит информации. Неопределенность знаний о некотором событии – это количество возможных результатов события.
4.Формула Хартли или хартлиевское количество информации или мера Хартли - логарифмическая мера информации, которая определяет количество информации, содержащееся в сообщении. ... Формула была предложена Ральфом Хартли в 1928 году как один из научных подходов к оценке сообщений.
5.Случа́йное собы́тие — подмножество множества исходов случайного эксперимента; при многократном повторении случайного эксперимента частота наступления события служит оценкой его вероятности.