М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kositskaya80
kositskaya80
03.03.2023 01:08 •  Информатика

Конфеты Маленький мальчик попал в сказочную страну и увидел там дорогу, вдоль которой разложены мешки с конфетами. На каждом мешке написано количество конфет. Мальчик может взять в каждую руку два мешка, лежачих рядом. Какое наибольшее количество конфет он может взять?

Входные данные

В единственной строке задано сначала количество мешков N (4 <= N <= 10000), а потом N чисел через пробел - количество конфет в каждом мешке (все числа неотрицательны и не превышают 1000000).

Выходные данные

Вывести единственное искомое число - ответ к задаче.

👇
Открыть все ответы
Ответ:
елен9
елен9
03.03.2023

Для форматирования текста в таблице (как и за ее пределами) используется панель «Управление» или палитра «Символ». Кроме того, для форматирования самой таблицы служат два основных диалоговых окна: «Параметры таблицы» и «Параметры ячейки». Они позволяют изменять число строк и столбцов, внешний вид рамки вокруг таблицы и заливку, задавать интервалы до таблицы и после, изменять верхние и нижние колонтитулы и добавлять другие элементы форматирования.

Для форматирования структуры таблицы используются палитра «Таблица» и панель «Управление» или контекстные меню. Чтобы вызывать контекстное меню для работы с параметрами таблицы, выделите одну или несколько ячеек, затем нажмите правой кнопкой мыши (Windows) или нажмите, удерживая нажатой клавишу Control (Mac OS).

4,8(48 оценок)
Ответ:
Himimory
Himimory
03.03.2023
2)суждение – это форма мышления, в которой утверждается или отрицается связь между предметом и его признаком или отношение между предметами и которая обладает свойством выражать либо истину, либо ложь. Если в суждении утверждается связь, существующая в действительности, или отрицается связь, которая в действительности отсутствует, то такое суждение будет истинным. Например, “Кража – преступление.
6) Гипотезой называют высказывание или теорию (совокупность
определенных высказываний) , представляющих собой некоторое, предположение,
то есть предположительный ответ на некоторый вопрос о существовании, о причинах какого-то явления и происхождении его и т. п. Например, предположение — до полета спутника вокруг Луны — о существовании гор и кратеров на обратной стороне Луны; гипотеза А. И.
Опарина о происхождении жизни на Земле, гипотеза о происхождении Солнечной
системы и т. п.
3)Студент занимается на 5 курсе или занимается баскетболом.
Строгая дизъюнкция: союз “или” употребляется в исключающем смысле, когда происходит выбор между двумя альтернативами: либо одно, либо другое. Исключающая (строгая) дизъюнкция (x V y) истинна тогда, когда только один из ее членов является истинным, а другой - ложным Она будет ложная, если оба ее члена одновременно истинны либо ложны.
5)Предложения в других грамматических формах (собственно вопросительные, побудительные и т. д. ) непосредственно суждениями не являются, поскольку ничего не утверждают и не отрицают.
4) истинность суждения, а тем самым и теории, состоящей из множества суждений, относительна к принятым идеализациям. Все люди рыжеволосы доказать не истинность этого суждения. Вывод такой человеческая жизнь это относительная ценность это еще один пример однозначной абсолютной безусловной истины.
1) Изучение геометрии основано на аксиоматическом методе. После формулировки основных понятий и аксиом все дальнейшие результаты теории – результаты логических рассуждений, которые оформляются в виде определенного вида утверждений. Теорема – утверждение, требующее доказательства. Лемма – вс теорема, которая приводится для того, чтобы с ее доказать следующую теорему или группу теорем. Следствие-теорема, которая позволяет более полно трактовать содержание данной теоремы, аксиомы, определения. Рассмотрим, например, формулировку теоремы, данную в следствии 1.1: если на луче отложить от начальной его точки два отрезка AB и AC и если AB = AC, то точки B и C совпадут. Условием теоремы является предложение {на луче отложить от начальной его точки два отрезка AB и AC и AB = AC}. Это предложение не является в данном виде высказыванием, но содержит описание множества объектов, относительно которых делается высказывание вида AB = AC. Из описания ясно, что речь идет о множестве отрезков луча a, отложенных от начальной его точки. Поскольку один конец отрезка фиксирован, то отрезок определяется однозначно точкой луча. Обозначим как P множество точек луча, отличных от его начальной точки. Пусть B P – заданная точка. Тогда условие теоремы является предложением относительно точки множества P. Перепишем условие теоремы в виде: A (x) = {длина отрезка Ax = AB}. Очевидно, это предикат. Заключение теоремы есть предикат B (x) = {точка x совпадает с точкой B}. Тогда теорему можно переформулировать следующим образом: если x – произвольная точка луча AB такая, что Ax = AB, тогда точка x совпадает с точкой B.На основании этого утверждения основан метод доказательства от противного. Суть этого метода состоит в том, что доказывают истинность теоремы, противоположной обратной, поскольку если эта теорема истинна, то и исходная теорема тоже верна.
4,6(82 оценок)
Это интересно:
Новые ответы от MOGZ: Информатика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ