1)
var a:array [1..100] of integer;
n,i:integer;
begin
for i:=10 to 99 do begin
a[i]:=i;
if (a[i] mod n=0) then writeln(a[i]);
end;
end.
2)
var a:array [1..100] of integer;
n,k,i,x,y,z: integer;
begin
readln(n,k);
for i:=n to k do begin
a[i]:=i;
x:=a[i] mod 10;
y:=a[i] div 10;
z:=y mod 10;
y:=y div 10;
if (x=y) or (x=z) or (y=z) then writeln(a[i]);
end;
end.
3)
var a,n,an,na: integer;
begin
readln(a,n);
if (a>0) and (b>0) then begin
an:=a*10+n;
na:=n*10+a else writeln('Введены неверные числа!');
end;
end.
t = 2pi*sqrt(l/g)
в среде это g будет, естественно, меньше, так как на шарик действует выталкивающая сила.
найдём это g.
по 2 закону ньютона f = p-fa = pш*v*g0 - рс*v*g0=v*g0*(pш-рс)=m*g = pш*v*g
откуда g = g0*(1-pc/pш)
я использовал обозначения
g0 - стандартное ускорение свободного падения
рш - плотность шарика
рс - плотность среды
v - объём шарика.
то, что я написал, это просто закон архимеда, не более того. а закон ньютона - как скобки.
подставим в исходную формулу, получим
t = 2pi*sqrt(l/g0*(1-pc/pш))
подставим исходные данные
t = 2*pi*sqrt(0.1/g0*(1-1/1.2)) =2*pi*sqrt(6/(10*g0))=2*pi*sqrt(3/(5*g0)) = 2*3.14159*sqrt(3/(5*9.81)) = 1.556c = 1.56c
замечание1. в приближённых вычислениях часто принимают во внимание тот факт, что g = pi^2 c хорошей точностью. это значительно вычисления.
в нашем случае сразу получаем
t = 2*pi*sqrt(l/(g0*(1-1/1. = 2*sqrt(0.1*1.2/0.2) = 2*sqrt(0.6)=1.55 = 1.55c
то есть совпадение до сотых! а вычислять проще.
замечание2 это соотношение действительно только в системе си и его не сложно "доказать". нужно только вспомнить, что такое метр, когда его вводили при наполеоне.
вот вроде и всё.
хотя нет. попробуй исследовать полученную формулу. а что если плотность среды выше плотности шарика?
(подсказка - маятник перевернётся "вверх ногами").
ну и последнее. при таких плотностях среды(сравнимых с плотностью шарика) пренебрегать сопротивлением среды - рискованно, это сопротивление, как правило, большое и существенно влияет на поведение маятника.
На скриншотах
=================