из курса вам известно, что цифры десятичной записи числа – это просто коэффициенты его представления в виде суммы степеней числа – основания системы счисления:
при переводе чисел из десятичной системы счисления в римскую мы и воспользовались этим правилом (444 = 400 + 40 + 4; 2986 = 2000 + 900 + 80 + 6).
при записи чисел значение каждой цифры зависит от ее положения. место для цифры в числе называется разрядом, а количество цифр в числе разрядностью. на самом деле числа можно записывать как сумму степеней не только числа 10, но и любого другого натурального числа, большего 1.
определение. развернутой формой записи числа называется такая запись: а4а3а2а1а0 = а4*q4 + a3*q3 + a2*q2 + a1*q1 + a0*q0 , где а4,а3,а2,а1,а0 –цифры числа, q –основание степени.
пример1. получить развернутую форму числа 7512410.
решение:
а4 = 7, а3 = 5, а2 =1 ,а1 =2, а0 =4, q=10
4 3 2 1 0
75 12410 = 7*104 + 5*103 + 1*102 + 2*101 + 4*100.
пример2. получить развернутую форму числа 1123.
решение:
2 1 0
1123 = 1*32 + 1*31 +2*30
пример3. получить развернутую форму числа 176,218.
решение: 21 0-1-2а8=176, 218=1*82+7*81+6*80+2*8-1+1*8-2 для самостоятельной работы: 1. запишите в развернутом виде числа: а8=143511,62а2=100111а10=143,511а16=1а3,5с12. запишите в свернутой форме число: 9*101+1*100+5*10-1+3*10-2a*162+1*161+c*160+3*16-1
1) Один байт = 8 бит, максимальное число 2^8 - 1 = 255, если числа без знака. Для знаковых чисел старший бит отводится под знак числа, следовательно, минимальное число = - 2^7 - 1 = - 127, максимальное число = + 127 2) Число 1607, ячейка двухбайтовая, один бит под знак, следовательно, под число отводится 15 бит, в двоичном представлении 1607(10) = 11001000111(2), дополняем до 16 бит, старший бит - знаковый - нулевой, так как число положительное = 0000011001000111(2) - это двоичное представление в двухбайтовой ячейке, чтобы получить шестнадцатиричное представление, разбиваем число справа - налево по 4 бита 0000 0110 0100 0111 и записываем в шестнадцатиричном виде 0111(2) = 7(16) 0100(2) = 4(16) 0110(2) =6(16) 0000(2) = 0(16) 1607(16) = 0647(16) или без старшего не значащего нуля = 647(16) 3) для получения дополнительного кода числа, находят обратное число, или инверсию числа, для этого каждый бит числа изменяют на противоположный, 1 на 0, 0 на 1 105(10) = 1101001(2) - это и есть дополнительный код числа - 105, т.е. дополнительным кодом числа (- а) будет число а. Найдем дополнительный код в однобайтовой ячейке числа 105(10) = 01101001(2), а) находим обратное 01101001(2) ->(обратное) ->10010110(2) б) дополнительный код-> обратный код + 1 ->(дополнительный)->10010111(2), а это число - 105 потому, что отрицательные числа представляются в дополнительном коде. Если для числа - 105 найти дополнительный код, то получим число 105 10010111(2)->(дополнительный)->01101000+1->01101001 = 69(16) = 16*6+9 = 96+9 = 105
§1. о системах счисления.
n4. развернутая форма записи числаиз курса вам известно, что цифры десятичной записи числа – это просто коэффициенты его представления в виде суммы степеней числа – основания системы счисления:
25076 = 2*10000 + 5*1000 + 0*100 + 7*10 + 6*1 = 2*104 +5*103 + 0*102 +7*101+6*100
при переводе чисел из десятичной системы счисления в римскую мы и воспользовались этим правилом (444 = 400 + 40 + 4; 2986 = 2000 + 900 + 80 + 6).
при записи чисел значение каждой цифры зависит от ее положения. место для цифры в числе называется разрядом, а количество цифр в числе разрядностью. на самом деле числа можно записывать как сумму степеней не только числа 10, но и любого другого натурального числа, большего 1.
определение. развернутой формой записи числа называется такая запись: а4а3а2а1а0 = а4*q4 + a3*q3 + a2*q2 + a1*q1 + a0*q0 , где а4,а3,а2,а1,а0 –цифры числа, q –основание степени.
пример1. получить развернутую форму числа 7512410.
решение:
а4 = 7, а3 = 5, а2 =1 ,а1 =2, а0 =4, q=10
4 3 2 1 0
75 12410 = 7*104 + 5*103 + 1*102 + 2*101 + 4*100.
пример2. получить развернутую форму числа 1123.
решение:
2 1 0
1123 = 1*32 + 1*31 +2*30
пример3. получить развернутую форму числа 176,218.
решение: 21 0-1-2а8=176, 218=1*82+7*81+6*80+2*8-1+1*8-2 для самостоятельной работы: 1. запишите в развернутом виде числа: а8=143511,62а2=100111а10=143,511а16=1а3,5с12. запишите в свернутой форме число: 9*101+1*100+5*10-1+3*10-2a*162+1*161+c*160+3*16-1