Автозавод выпускает автомобили 4-х видов: W, X, Y, Z, (Хат, Седан, Джип, Вагон). Ежемесячно он может выпускать не более 1000 автомобилей (при этом каждого типа - не меньше 100). В течение месяца 1000 работников завода работают по 150 часов каждый. Завод может израсходовать за месяц не более 900 тонн стали. Определить оптимальное количество автомобилей, которые надо выпустить чтобы прибыль была максимальной. Нужно сделать в excel через поиск решения. Заранее .
OCR-версия страницы из учебника (текст страницы, которая находится выше):Отсюда получаем ас = ab и Ьс = Ьа. Из этих двух равенств следует, что ас-Ьс, или (Ь - а) с = 0. Но Ь - а - АВ, с-DC, поэтомуАВ DC = 0, и, значит, АВ J_ CD, что и требовалось доказать.464 Вычислите угол между прямыми АВ и CD, если: а) А (3; -2; 4), В (4; -1; 2), С (6; -3; 2), D (7; -3; 1); б) А (5; -8; -1), В (6; -8; -2), С (7; -5; -И), D (7; -7; -9); в) А (1; 0; 2), В (2; 1; 0), С (0; -2; -4), D (-2; -4; 0); г) А (-6; -15; 7), В (-7; -15; 8), С (14; -10; 9), D (14; -10; 7).465 Дана правильная треугольная призма АВСА1В1С1, в которой ААХ = = л/2АВ (рис. 139, а). Найдите угол между прямыми АСХ и АХВ. РешениеПусть АВ = а, тогда ААХ = v2a. Введем прямоугольную систему координат так, как показано на рисунке 139, б. Вершины А, В, А1т С!имеют следующие координаты (объясните почему): А^~—;|-;0j,В (0; а; 0), А, ; j; aV2 ), С, (0; 0; aV2).Отсюда находим координаты векторов АСХ и ВАХ:ACi{-^#rf;aV2}, ^ ji^;-|;aV2Векторы АСг и ВАг являются направляющими векторами прямых ACj и AlB. Искомый угол ф между ними можно найти по фор-муле (2V ,i_3a2+la2 + 2(J2!14 4 ,cos Ф = - --------— = откуда Ф = 60°.;3a2+la2 + 2a2 . ;la2+la2 + 2a2 2\' 4 4 \ 4 4466 В кубе ABCDA^Bfi^D^ точка М лежит на ребре АА,, причем AM : MAj = 3 : 1, а точка N — середина ребра ВС. Вычислите косинус угла между прямыми: а) MN и DDX\ б) MN и BD; в) MN и В,£»; г) MN и Afi.