Дискретные сигналы (они же цифровые) - принимают конечное число значений функции: примеры дискр: - энергетические уровни атома, - сигналы светофора - символы, слова... и т.д. и т.п. непрерывный (он же аналоговый) - принимает бесконечное количество значений функции, амлитуда и время которого меняются непрерывно. примеры непрерывных: - звуковая волна, - диаграмма изменения влажности, напряжения, и других некоторых физических величин
для преобразования непрерывного сигнала в дискретные производят дискретизацию. Процесс дискретизации сопровождается потерей информации если частота дискретизации в 2 раза меньше максимальной частоты непрерывного сигнала по теореме Найквиста... В России эту теорему называют Котельникова.
Каждая из компонент связности должна быть кликой (иначе говоря, каждые две вершины в одной компоненте связности должны быть связаны ребром). Если в i-ой компоненте связности вершин, то общее число рёбер будет суммой по всем компонентам связности:
Требуется найти максимум этого выражения (т.е. на самом деле - максимум суммы квадратов) при условии, что сумма всех ni равна N и ni - натуральные числа.
Если K = 1, то всё очевидно - ответ N(N - 1)/2. Пусть K > 1.
Предположим, n1 <= n2 <= ... <= nK - набор чисел, для которых достигается максимум, и n1 > 1. Уменьшим число вершин в первой компоненте связности до 1, а оставшиеся вершины "перекинем" в K-ую компоненту связности. Вычислим, как изменится сумма квадратов: Поскольку по предположению n1 > 1 (тогда и nK > 1), то сумма квадратов увеличится, что противоречит предположению о том, что на выбранном изначально наборе достигается максимум. Значит, максимум достигается, если наименьшая по размеру компонента связности - изолированная вершина. Выкинем эту компоненту связности, останутся K - 1 компонента связности и N - 1 вершина. Будем продолжать так делать, пока не останется одна вершина, тогда получится, что во всех компонентах связности кроме последней должно быть по одной вершине.
8000бит<2500байт<2.5кб
1кб<500кб<0,5мб
Объяснение: