int RowWithMax(double m[n][n], int j)
{
double max_el = m[j][j];
int max_i = j;
for (int i = j; i < n; i++)
{
if (abs(m[i][j]) > abs(max_el))
{
max_el = m[i][j];
max_i = i;
}
}
return max_i;
}
void RowChange(double m[n][n], double f[n], int i1, int i2)
{
for (int j = 0; j < n; j++)
{
/*m[i1][j] = m[i1][j] + m[i2][j];
m[i2][j] = m[i1][j] - m[i2][j];
m[i1][j] = m[i1][j] - m[i2][j];*/
swap(m[i1][j], m[i2][j]);
}
swap(f[i1], f[i2]);
}
double StraightRun(double m[n][n], double f[n], int i) //прямой метод
{
double el;
double det = 1;
int reverse = 0;
int max_i = RowWithMax(m, i);
if (i != max_i)
{
RowChange(m, f, i, max_i);
//reverse++;
det *= (-1);
}
el = m[i][i];
det *= el;
f[i] /= el;
for (int i1 = n - 1; i1 >= i; i1--)
{
m[i][i1] /= el;
}
for (int i2 = i + 1; i2 < n; i2++)
{
el = m[i2][i];
f[i2] -= f[i] * el;
for (int j = n - 1; j >= i; j--)
{
m[i2][j] -= el * m[i][j];
}
}
return det/**pow(-1, reverse)*/;
}
ответ: [35;40]
Объяснение:
Логическое ИЛИ истинно, если истинно хотя бы одно утверждение.
Введем обозначения:
(x ∈А) ≡ A; (x ∈ P) ≡ P; (x ∈ Q) ≡ Q; (x ∈ R) ≡ R.
Применив преобразование импликации, получаем:
¬P∨Q∨¬A∨R
¬P∨Q∨R истинно тогда, когда x∈(– ∞,15);(25,∞). Выражение ¬A должно быть истинно на интервале [15;25]. Поскольку все выражение должно быть истинно для ЛЮБОГО x, следовательно, выражение A должно быть истинно на промежутке, не включающем отрезок [15;25].
Из всех отрезков только отрезок [35;40] удовлетворяет этому условию.
Столбцы пишутся английскими (или латинскими) буквами, это одинаково.
Когда кончаются буквы латинского алфавита, дальше идут двойные.
A, B, C, ..., X, Y, Z, AA, AB, AC, ..., AZ, BA, BB, BC, и так далее.
В Excel 97-2003 256 столбцов, от А до IV.
В Excel 2007-2010 16384 столбцов, от А до XFD.