Каждая из компонент связности должна быть кликой (иначе говоря, каждые две вершины в одной компоненте связности должны быть связаны ребром). Если в i-ой компоненте связности вершин, то общее число рёбер будет суммой по всем компонентам связности:
Требуется найти максимум этого выражения (т.е. на самом деле - максимум суммы квадратов) при условии, что сумма всех ni равна N и ni - натуральные числа.
Если K = 1, то всё очевидно - ответ N(N - 1)/2. Пусть K > 1.
Предположим, n1 <= n2 <= ... <= nK - набор чисел, для которых достигается максимум, и n1 > 1. Уменьшим число вершин в первой компоненте связности до 1, а оставшиеся вершины "перекинем" в K-ую компоненту связности. Вычислим, как изменится сумма квадратов: Поскольку по предположению n1 > 1 (тогда и nK > 1), то сумма квадратов увеличится, что противоречит предположению о том, что на выбранном изначально наборе достигается максимум. Значит, максимум достигается, если наименьшая по размеру компонента связности - изолированная вершина. Выкинем эту компоненту связности, останутся K - 1 компонента связности и N - 1 вершина. Будем продолжать так делать, пока не останется одна вершина, тогда получится, что во всех компонентах связности кроме последней должно быть по одной вершине.
Граф - множество вершин и ребер, соединяющих эти вершины. Он несет информацию об элементах системы и связи между ними. Элементы системы изображаются как вершины или узлы графа. Отношения между ними изображаются как ребра или дуги графа. Деревом называют ациклический (то есть между любыми вершинами есть только один путь), связный (то есть от любой вершины графа можно добраться в другую) граф. Корень дерева - это вершина с нулевой степенью захода (то есть в нее не ведут другие ребра). Для неориентированного графа это просто выбранная нами вершина. Ветви - это ребра дерева. Листья дерева - это вершины с нулевой степенью исхода (то есть из них не выходят ребра), т.е. не имеющих поддеревьев. Надеюсь объяснил доступно.
var a,b,c,d: real;
begin
repeat
writeln('Введите a,b,c,d');
readln(a,b,c,d);
until a*b*c*d<>0; //проверка длины отрезков <> 0
if ((a=b) and (c=d)) or ((a=c) and (b=d)) then writeln('Параллелограмм' )
else writeln('Не параллелограмм' ) ;
end.