Если основание системы счисления равно N, то для записи чисел в этой системе используются цифры от 0 до N-1, то есть наибольшая цифра равна N-1. Например для нашей родной десятичной системы N=10, используются 10 цифр 0 1 2 3 4 5 6 7 8 9, наибольшая из них 9. И наоборот, если наибольшая цифра в записи числа равна N-1, то минимально возможное основание системы счисления на единицу больше, то есть равно N.
Анализируем:
Число 1010: наибольшая цифра = 1, минимальное основание = 2
Число 7817: наибольшая цифра = 8, минимальное основание = 9
Число 1023 - наибольшая цифра = 3, минимальное основание = 4
Число 6767 - наибольшая цифра = 7, минимальное основание = 8
1010 2
7817 9
1023 4
6767 8
Посчитаем m.
Для начала посчитаем количество номеров, содержащих ровно одну цифру 7. их 3 * 9 * 9 = 243 (3 возможных позиции расположения этой цифры, а каждая из оставшихся цифр - одна из 9 (всего цифр 10, исключаем цифру 7). Среди них не может быть чисел, содержащих более 2 нулей, поэтому все эти числа подходят.
Теперь посчитаем количество наборов из 3 цифр, не содержащих ни одной 7. Их 9 * 9 * 9 = 729 (всего возможно 9 цифр на каждой позиции). Но среди них есть ровно один набор, содержащий более 2 нулей: 000. Отнимем его: 729 - 1 = 728
m = 728 + 243 = 971
Всего номеров 971 * n, где n - количество букв в алфавите