М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
даночкаа88
даночкаа88
14.01.2023 14:57 •  Информатика

Вкодировке unicode на каждый символ отводится два байта. определи информационный объём текста из74 символов в этой кодировке.

👇
Ответ:
nazi33
nazi33
14.01.2023
I = i*n,
где I - информационный объём сообщения, i - кол-во информации для хранения 1 символа в данном алфавите, n - кол-во символов

I = 2*74 = 144 байт

ответ: 144 байт.
4,6(38 оценок)
Открыть все ответы
Ответ:
taklecovatana
taklecovatana
14.01.2023

Избавься от ограничений

ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ

Pupsikihw

13.10.2019

Информатика

5 - 9 классы

ответ дан

Сочинение на тему: система счисления (желательно кратко)

1

СМОТРЕТЬ ОТВЕТ

Войди чтобы добавить комментарий

ответ

4,0/5

2

Kris0008

середнячок

7 ответов

408 пользователей, получивших

Система счисления – это записи чисел с символов. Мы все привыкли использовать десять различных знаков для записи чисел: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Такая система счисления называется десятичной. Один знак числа называется цифрой.

Основание системы счисления – это количество знаков, используемых для записи числа в этой системе. Основанием системы счислений, как правило, может являться любое натуральное число (например, шумеры использовали шестидесятеричную систему счисления), но сегодня наиболее распространены (кроме десятичной) двоичная, восьмеричная и шестнадцатеричная. Основание системы счисления указывается подстрочным знаком после числа, например 1012.

Разряд числа – это место цифры в числе. В зависимости от количества разрядов мы называем числа двузначными, трёхзначными, четырёхзначными и т.д.

4,6(80 оценок)
Ответ:
Ilyakuhs228
Ilyakuhs228
14.01.2023

Для кодирования информации в компьютере вместо привычной десятичной системы счисления используется двоичная система счисления.

Двоичной системой счисления люди начали пользоваться очень давно. Древние племена Австралии и островов Полинезии использовали эту систему в быту. Так, полинезийцы передавали необходимую информацию, выполняя два вида ударов по барабану: звонкий и глухой. Это было примитивное представление двоичной системы счисления.

Двоичной системой счисления называется позиционная система счисления с основанием 2 .

Для записи чисел в ней использовали только две цифры: 0 и 1 .

Для обозначения системы счисления, в которой представляется число, используют нижний индекс, указывающий основание системы. Например, 110112 — число в двоичной системе счисления.

Цифры в двоичном числе являются коэффициентами его представления в виде суммы степеней с основанием 2 , например:

1012=1⋅22+0⋅21+1⋅20 .

В десятичной системе счисления это число будет выглядеть так:

1012=4+0+1=5 .

Для перевода целого десятичного числа в двоичную систему счисления нужно последовательно выполнять деление данного числа и получаемых целых частных на 2 до тех пор, пока не получим частное, равное нулю. Исходное число в двоичной системе счисления составляется последовательной записью полученных остатков, начиная с последнего.

Пример:

Переведём десятичное число 13 в двоичную систему счисления. Рассмотренную выше последовательность действий (алгоритм перевода) можно изобразить так:

13.png

Получили 1310=11012 .

Пример:

Если десятичное число достаточно большое, то более удобен следующий записи рассмотренного выше алгоритма:

224

112

56

28

14

7

3

1

0

0

0

0

0

1

1

1

22410=111000002 .

Восьмеричной системой счисления называется позиционная система счисления с основанием 8 .

Для записи чисел в восьмеричной системе счисления используются цифры: 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 .

Для перевода целого восьмеричного числа в десятичную систему счисления следует перейти к его развёрнутой записи и вычислить значение получившегося выражения.

Для перевода целого десятичного числа в восьмеричную систему счисления следует последовательно выполнять деление данного числа и получаемых целых частных на 8 до тех пор, пока не получим частное, равное нулю. Исходное число в восьмеричной системе счисления составляется последовательной записью полученных остатков, начиная с последнего.

Пример:

Переведём восьмеричное число 154368 в десятичную систему счисления.

154368=1⋅84+5⋅83+4⋅82+3⋅81+6⋅80=694210

Пример:

Переведём десятичное число 94 в восьмеричную систему счисления.

94.png

9410=1368

Шестнадцатеричной системой счисления называется позиционная система счисления с основанием 16 .

Для записи чисел в шестнадцатеричной системе счисления используются цифры: 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 и латинские буквы A, B, C, D, E, F. Буквы A, B, C, D, E, F имеют значения 1010 , 1110 , 1210 , 1310 , 1410 , 1510 .

Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.

Для перевода целого десятичного числа в шестнадцатеричную систему счисления следует последовательно выполнять деление данного числа и получаемых целых частных на 16 до тех пор, пока не получим частное, равное нулю. Исходное число в системе счисления составляется последовательной записью полученных остатков, начиная с последнего.

Пример:

Переведём шестнадцатеричное число 2 A7 в десятичное. В соответствии с вышеуказанными правилом представим его в виде суммы степеней с основанием 16 :

2A716=2⋅162+10⋅161+7⋅160=512+160+7=679 .

Пример:

Переведём десятичное число 158 в шестнадцатеричную систему счисления.

Безымянный111.png

15810=9E16 .

Для перевода числа из любой позиционной системы счисления в десятичную необходима использовать развернутую формулу числа, заменяя, если это необходимо, буквенные обозначения соответствующими цифрами.

Для перевода целых чисел десятичной системы счисления в число любой системы счисления последовательно выполняют деление нацело на основание системы счисления, пока не получат нуль. Числа, которые возникают как остаток от деления на основание системы счисление, представляют собой последовательную запись разрядов числа в выбранной системе счисления от младшего разряда к старшему. Поэтому для записи самого числа остатки от деления записывают в обратном порядке.

Предыдущая теория

Вернуться в тему

Следующее задание

4,7(86 оценок)
Это интересно:
Новые ответы от MOGZ: Информатика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ