Встретили космонавты инопланетянина, который свободно разговаривал на земном языке. выяснилось, что у гостя 13 сыновей и 23 дочери, а всего детей -102. найдите, какой системой счисления пользовался гость?
Так как при сложении 13 и 23 в младшем разряде получается 2, то основание системы счисления можно определить так: 3+3-2 = 4 (действия записаны в десятичной системе счисления). 13(4) = 4+3 = 7(10) 23(4) = 2*4+3 = 11(10) 102(4) = 4^2+2 = 18(10)
Пусть b - количество быков, k - количество коров, t - количество телят. Тогда можно составить систему уравнений
Два уравнения, три неизвестных. Придется решать перебором вариантов. Но прямой перебор - это неинтересно. Попробуем оптимизировать. На 100 рублей можно купить максимум 100/10=10 быков, или 100/5=20 коров, или 100/0.5=200 телят. Без телят не обойтись, даже 18 коров и бык - это 19 голов, а нужно 100. Подбирать нужное количество из 200 хуже, чем из 20 или 10, поэтому сделаем замену, чтобы избавиться от t. Из второго уравнения следует, что t=100-b-k. (1) Подставим значение t в первое уравнение: 10b+5k+0.5(100-b-k)=100; 10b+5k+50-0.5b-0.5k=100; 9.5b+4.5k=50; 19b+9k=100 ⇒ k=(100-19b)/9 (2) Укрупненный алгоритм: Перебираем b от 0 до 9 (10 нельзя, истратим все 100 рублей, а телят покупать надо!). Для каждого b находим k по формуле (2). Если оно целочисленное, находим t по формуле (1). Решение найдено. Иначе перебор продолжается.
var b,k,t:integer; v:real;
begin for b:=0 to 9 do if (100-19*b) mod 9=0 then begin k:=(100-19*b) div 9; t:=100-b-k; Writeln('Быков ',b,', коров ',k,', телят ',t); break end; end.
Если число 49 записывается как 121, значит первый остаток от деления равен 1, то есть основанием системы счисления является число, кратное 48.
121 имеет 3 разряда, значит основание однозначно меньше 10 и больше 2. Подходят 3, 4, 6, 8.
Учитывая, что в числе 121 три разряда, значит число 48 делилось всего три раза. Число 8 не подойдет, т.к. 48/8=6, значит будет всего два деления. Число 3 не подойдет, т.к. 48/3 = 16, 16/3=5 - то есть тут будет больше трёх знаков. Число 4 не подойдет, т.к. 48/4=12, а 12 делится на 4 без остатка, но, судя по числу, во втором делении остаток должен быть равен 2. Остаётся число 6. Проверим
13(4) = 4+3 = 7(10)
23(4) = 2*4+3 = 11(10)
102(4) = 4^2+2 = 18(10)