Дан целочисленный массив размера n. вывести все содержащиеся в данном массиве четные числа в порядке возрастания их индексов, а также их количество сделать
1. Схематически записываем условие Есть две команды: (1) ×3 и (2) -5 Тут я ввожу обозначения: в скобках некий "код" команды, а далее обозначение, что именно она делает. Команда с кодом 1 умножает на три, с кодом 2 - вычитает 5. Теперь, что нам надо получить: 8 ⇒ 36, т.е. из 8 получить 36.
2. Анализируем, какое число может быть перед выполнением последней (т.е. пятой) команды. Применим к результату команды, обратные к (1) и (2). Действие, обратное умножению - это деление, вычитанию - сложение. Для (1) получим 36/3 = 12, т.е. в результате выполнения первых четырех (пока в неизвестном порядке) команд должно получиться 12. Для (2) получим 36+5 = 41.
3. Теперь анализируем, какой могла бы быть третья команда Чтобы получить 12 после (1), нужно взять число 12/3 = 4. Чтобы получить 12 после (2), нужно взять число 4+5=9. Получить 41 после (1) невозможно, поскольку 41 на 3 не делится нацело. Чтобы получить 41 после (2), нужно взять число 41+5=46. Итак, имеем три числа-кандидата. 46 выглядит подозрительно, потому что получить его можно только из 51 при поскольку 46 на 3 не делится и не может быть получено при А получить 8 ⇒ 51 за две возможные операции не получится. Поэтому 46 отбрасываем.
4. Анализируем, какой могла бы быть вторая по порядку команда Получить 4 после (1) нельзя, потому что 4 не делится на 3. Чтобы получить 4 после (2), нужно взять число 4+5=9. Чтобы получить 9 после (1), нужно взять число 9/3 = 3. Чтобы получить 9 после (2), нужно взять число 9+5=14.
5. Рассматриваем, что можно получить из исходного числа а) 8 после (1) дает 8×3 = 24 и получить 3, 9 или 14 из 24 при одной из имеющихся команд невозможно. б) 8 после (2) дает 8-5 = 3 - это и есть решение проблемы.
1. С=2*Pi*R, S= Pi*R^2, V=4/3*Pi*R^3, где Pi=3,14, заданный радиус R 2. P=a+b, S=1/2*a*b, где a и b - данные катеты 3. Пусть даны координаты трех вершин треугольника A(x1;y1), B(x2;y2), C(x3;y3). Расстояние между двумя точками вычисляется по формуле Тогда периметр треугольника можно вычислить по формуле: P=sqrt((x2-x1)^2+(y2-y1)^2)+sqrt((x3-x2)^2+(y3-y2)^2)+sqrt((x3-x1)^2+(y3-y1)^2). Площадь треугольника по формуле Герона вычисляется по формуле: , где -полу периметр треугольника. S=sqrt((sqrt((x2-x1)^2+(y2-y1)^2)+sqrt((x3-x2)^2+(y3-y2)^2)+sqrt((x3-x1)^2+(y3-y1)^2)/2*(sqrt((x2-x1)^2+(y2-y1)^2)+sqrt((x3-x2)^2+(y3-y2)^2)+sqrt((x3-x1)^2+(y3-y1)^2)/2-sqrt((x2-x1)^2+(y2-y1)^2))*(sqrt((x2-x1)^2+(y2-y1)^2)+sqrt((x3-x2)^2+(y3-y2)^2)+sqrt((x3-x1)^2+(y3-y1)^2)/2-+sqrt((x3-x2)^2+(y3-y2)^2))*(sqrt((x2-x1)^2+(y2-y1)^2)+sqrt((x3-x2)^2+(y3-y2)^2)+sqrt((x3-x1)^2+(y3-y1)^2)/2-sqrt((x3-x1)^2+(y3-y1)^2)) 4. Среднее геометрическое трех чисел вычисляется по формуле или (a*b*c)^1/3
begin
var n:=ReadInteger('n =');
var a:=ArrRandom(n,10,90); a.Println;
Print(a.Where(x->x mod 2=0).Println.Count);
end.
Пример:
n = 10
12 76 26 69 90 86 71 71 45 44
12 76 26 90 86 44
6