Тогда это заголовок цикла, где переменная i пробегает значения из заданного диапазона.
Диапазон задается функцией range(0, len(a),2).
Первый аргумент = 0 - начальное значение в этом диапазоне.
Второй аргумент - конечное значение в диапазоне - задается функцией len(a). Это функция, которая возвращает размер некоторого объекта-контейнера. В простейшем случае это строка или массив.
Что такое "а" в Вашем случае из кода не видно.
Третий аргумент = 2 - шаг изменения.
Проще говоря, это может быть цикл от 0 до размера какой-то строки "а" с шагом 2.
Представим, что мы знаем ответ на вопрос "чему равна сумма всех выписанных чисел при выполнении вызова F(n)" для всех n < k. Попробуем понять, как найти ответ для n = k.
Что делает F(n)? Читаем текст программы: сначала выводит n, а потом (если n > 0) запускает F(n - 1) и F(n - 3). Обозначим S(n) - сумму всех чисел после вызова F(n), тогда (при n > 0) S(n) = n + S(n - 1) + S(n - 3)
Для неположительных n получаем, что S(n) = n (т.к. F(n) просто выводит n и завершает работу, не запуская никаких других F).
При исследовании рекурсивных алгоритмов бывает полезно понять, сколько вызовов функций делает программа (например, если рисовать дерево вызовов, это будет показывать количество "стрелочек" на этом дереве). Представим себе, что мы стали выполнять алгоритм на бумаге, попробуем понять, сколько чисел придется выписывать. Если #(N) - число вызовов процедуры F при наивном вычислении F(N). Понятно, что #(N) = #(N - 1) + #(N - 3) (при N <= 0 #(N) = 1). Не задаваясь целью получить точную формулу для #(N), получим только оценку (на самом деле, весьма показательную). Очевидно, что #(N - 1) >= #(N - 3), тогда #(N) >= 2 * #(N - 3). Так как #(0) = 1, то #(3) >= 2 * #(0) = 2, #(6) >= 2 * #(3) >= 2^2, #(9) >= 2 * #(6) >= 2^3, и вообще #(3N) >= 2^N Отсюда можно предположить, что #(N) растет не медленнее, чем 2^(N/3) >= 1.25^N. Если 1,25^N кажется медленно растущей функцией - это вовсе не так, для N = 100 (это немного, наверно?) получим число, большее миллиарда. Так что если не запоминать промежуточные результаты, результат будет считаться ооочень долго. S(N) также растет быстро, но это уже другая проблема.
Представим, что мы знаем ответ на вопрос "чему равна сумма всех выписанных чисел при выполнении вызова F(n)" для всех n < k. Попробуем понять, как найти ответ для n = k.
Что делает F(n)? Читаем текст программы: сначала выводит n, а потом (если n > 0) запускает F(n - 1) и F(n - 3). Обозначим S(n) - сумму всех чисел после вызова F(n), тогда (при n > 0) S(n) = n + S(n - 1) + S(n - 3)
Для неположительных n получаем, что S(n) = n (т.к. F(n) просто выводит n и завершает работу, не запуская никаких других F).
При исследовании рекурсивных алгоритмов бывает полезно понять, сколько вызовов функций делает программа (например, если рисовать дерево вызовов, это будет показывать количество "стрелочек" на этом дереве). Представим себе, что мы стали выполнять алгоритм на бумаге, попробуем понять, сколько чисел придется выписывать. Если #(N) - число вызовов процедуры F при наивном вычислении F(N). Понятно, что #(N) = #(N - 1) + #(N - 3) (при N <= 0 #(N) = 1). Не задаваясь целью получить точную формулу для #(N), получим только оценку (на самом деле, весьма показательную). Очевидно, что #(N - 1) >= #(N - 3), тогда #(N) >= 2 * #(N - 3). Так как #(0) = 1, то #(3) >= 2 * #(0) = 2, #(6) >= 2 * #(3) >= 2^2, #(9) >= 2 * #(6) >= 2^3, и вообще #(3N) >= 2^N Отсюда можно предположить, что #(N) растет не медленнее, чем 2^(N/3) >= 1.25^N. Если 1,25^N кажется медленно растущей функцией - это вовсе не так, для N = 100 (это немного, наверно?) получим число, большее миллиарда. Так что если не запоминать промежуточные результаты, результат будет считаться ооочень долго. S(N) также растет быстро, но это уже другая проблема.
Предположим, что это язык Питон.
Тогда это заголовок цикла, где переменная i пробегает значения из заданного диапазона.
Диапазон задается функцией range(0, len(a),2).
Первый аргумент = 0 - начальное значение в этом диапазоне.
Второй аргумент - конечное значение в диапазоне - задается функцией len(a). Это функция, которая возвращает размер некоторого объекта-контейнера. В простейшем случае это строка или массив.
Что такое "а" в Вашем случае из кода не видно.
Третий аргумент = 2 - шаг изменения.
Проще говоря, это может быть цикл от 0 до размера какой-то строки "а" с шагом 2.