Все химические элементы, образующие вещества окружающего нас мира, взаимосвязаны и подчиняются общим закономерностям, то есть представляют собой единое целое - систему химических элементов. Поэтому более полно таблицу Д.И. Менделеева называют периодической системой химических элементов. "Периодической" , так как общие закономерности в изменении свойств атомов, простых и сложных веществ, образованных химическими элементами, повторяются в этой системе через определенные интервалы или периоды. Некоторые из этих закономерностей хорошо известны. Менделеев пришел к открытию закона в результате сравнения свойств и оносительных атомных масс химических элементов. Он расположил известные ему элементы (их было 63) в длинную цепочку в порядке возрастания значений атомных масс и заметил в этой цепочке интервалы-периоды, в которых свойства элементов и образованных ими веществ изменялись сходным образом.
Закономерности изменения свойств:
В периодах (слева направо) - заряд ядра возрастает, число электронных уровней не меняется и равно номеру периода, число электронов на внешнем слое возрастает, радиус атома уменьшается, восстановительные свойства уменьшаются, окислительные свойства возрастают, высшая степень окисления растет от +1 до +7, низшая степень окисления растет от -4 до +1, металлические свойства веществ ослабевают, неметаллические свойства - усиливаются.
В главных подгруппах (сверху вниз) - заряд ядра возрастает, число электронных уровней возрастает, число электронов на внешнем слое не меняется и равно номеру группы, радиус атома увеличивается, восстановительные свойства увеличиваются, окислительные свойства уменьшаются, высшая степень окисления постоянна и равна номеру группы, низшая степень окисления не изменяется и равна (- №группы), металлические свойства веществ усиливаются, неметаллические свойства - ослабевают.
Каждая группа делится на 2 подгруппы - главную и побочную. Потому что в пределах одной группы не все элементы сходны по своим свойствам.
Элементы V группы главной подгруппы - азот, фосфор, мышьяк, сурьма и висмут.
Элементы V группы побочной подгруппы - ваннадий, ниобий, тантал и нильсборий.
Элемент II группы - кальций обладает наиболее сильными металлическими свойствами. И магний, и кальций находятся во второй группе главной подгруппе. В главных подгруппах сверху вниз метталиические свойства элементов возрастают.
Объяснение:
Для альдегидов типичными являются реакции присоединения водорода (гидрирование, восстановление) и окисления. [c.195]
Присоединение водорода к кетонам (гидрирование) происходит в тех же условиях, что и восстановление альдегидов. Кетоны восстанавливаются во вторичные спирты [c.201]
Реакции присоединения протекают за счет разрыва двойной связи карбонильной группы альдегида. Присоединение водорода, которое происходит при пропускании смеси формальдегида и водорода над нагретым катализатором — порошком никеля, приводит к восстановлению альдегида в спирт [c.320]
Характерным свойством карбоксильной группы является еще то, что находящаяся в ней карбонильная группа не дает реакций присоединения, свойственных альдегидам и кетонам. Поэтому карбоксильная группа является устойчивой против восстановления атомарным водородом. [c.291]
Восстановление альдегидов происходит в результате присоединения водорода по двойной связи между углеродом и кислородом карбонильной группы. Продуктом реакции является первичный спирт [c.116]
При восстановлении а,Р-непредельных альдегидов и кетонов водородом в момент выделения в первую очередь восстанавливается не карбонильный, а винильный фрагмент. Это объясняется тем, что присоединение водорода идет по 1,4-положениям сопряженной системы (что характерно также и для сопряженных алкадиенов см. разд. 1.3.2.2). [c.273]
Хлорангидриды кислот также могз т быть восстановлены в соответственные альдегиды каталитическим путем, а именно водородом в присутствии палладия, осажденного на сернокислом барии или на кизельгуре. Гидрирование ведется в кипящем кси- толе или кумоле в присутствии так называемого регулятора — хинолина, который предварительно нагревался с Уа по весу частью серы в течение нескольких часов. Регулятор служит для предотвращения дальнейшего восстановления альдегида в спирт или в соответствующий углеводород. Этот метод с успехом применялся для восстановления хлорангидридов анисовой, бензойной, нитро- и хлорбензойной, масляной и стеариновой киелот. Из хлорангидрида коричной кислоты в этих условиях образуется коричный альдегид, причем присоединения водорода к двойной связи в сколько нибудь заметной степени не наблюдается, Хлорангидриды пробковой и себациновой кислот, а также изофталевой и терефталевой кислот превращаются при этдм в соответствующие диальдегиды [c.321]
Реакции восстановления. При пропускании смеси паров муравьиного альдегида и водорода над катализатором (никель) происходит присоединение водорода по месту двойной связи в карбонильной группе с образованием первичного спирта [c.279]